Mesh is an important and powerful type of data for 3D shapes and widely studied in the field of computer vision and computer graphics. Regarding the task of 3D shape representation, there have been extensive research efforts concentrating on how to represent 3D shapes well using volumetric grid, multi-view and point cloud. However, there is little effort on using mesh data in recent years, due to the complexity and irregularity of mesh data. In this paper, we propose a mesh neural network, named MeshNet, to learn 3D shape representation from mesh data. In this method, face-unit and feature splitting are introduced, and a general architecture with available and effective blocks are proposed. In this way, MeshNet is able to solve the complexity and irregularity problem of mesh and conduct 3D shape representation well. We have applied the proposed MeshNet method in the applications of 3D shape classification and retrieval. Experimental results and comparisons with the state-of-the-art methods demonstrate that the proposed MeshNet can achieve satisfying 3D shape classification and retrieval performance, which indicates the effectiveness of the proposed method on 3D shape representation.
Growing evidence suggests that long non‐coding RNAs (lncRNAs) are associated with carcinogenesis. LncRNA small nucleolar RNA host gene 3 (SNHG3) is up‐regulated in various cancers and positively associated with poor prognosis of these cancers. However, the precise role of lncRNA SNHG3 in bladder cancer (Bca) remains unclear. In our research, we first reported that lncRNA SNHG3 was up‐regulated in bladder cancer tissues and positively related to poor clinical prognosis. Moreover, knockdown of lncRNA SNHG3 significantly suppressed the proliferation, migration, invasion and EMT process of Bca cells in vitro and vivo. Mechanistically, we revealed that suppression of SNHG3 evidently enhanced miR‐515‐5p expression and decreased GINS2 expression at posttranscriptional levels. Moreover, SNHG3 positively regulated GINS2 expression by sponging miR‐515‐5p under a competing endogenous RNA (ceRNA) mechanism. To sum up, our study suggested lncRNA SNHG3 acted as a microRNA sponge and an oncogenic role in the progression of bladder cancer.
The objective of this study was to investigate the effect of dietary supplementation with thiazolidinedione (TZD) on growth performance and meat quality of finishing pigs. In Experiment 1, 80 castrated finishing pigs (Large White×Landrace, BW = 54.34 kg) were randomly assigned to 2 treatments with 5 replicates of 8 pigs each. The experimental pigs in the 2 groups were respectively fed with a diet with or without a TZD supplementation (15 mg/kg). In Experiment 2, 80 castrated finishing pigs (Large White×Landrace, BW = 71.46 kg) were divided into 2 treatments as designed in Experiment 1, moreover, carcass evaluations were performed. The results from Experiment 1 showed that TZD supplementation could significantly decreased the average daily feed intake (ADFI) (p<0.05) during 0 to 28 d, without impairing the average daily gain (ADG) (p>0.05). In Experiment 2, the ADG was significantly increased by TZD supplementation during 14 to 28 d and 0 to 28 d (p<0.05) and the feed:gain ratio (F:G) was significantly decreased by TZD supplementation during 0 to 28 d (p<0.05). Compared with the control group, TZD group had significantly higher serum triglyceride (TG) concentration at 28h and serum high-density lipoprotein (HDL) levels at 14 d (p<0.05). Moreover, there was an apparent improvement in the marbling score (p<0.10) and intramuscular fat (IMF) content (p<0.10) of the longissimus dorsi muscle in pigs treated by TZD supplementation. Real-time RT-PCR analyses demonstrated that pigs of TZD group had higher mRNA abundance of PPARγ coactivator 1 (PGC-1) (p<0.05) and fatty acid-binding protein 3 (FABP3) (p<0.05) than pigs of control group. Taken together, these results suggested that dietary TZD supplementation could improve growth performance and increase the IMF content of finishing pigs through regulating the serum parameters and genes mRNA abundance involved in fat metabolism.
Immune cell-derived extracellular vesicles (EVs) have increasingly become the focus of research due to their unique characteristics and bioinspired applications. They are lipid bilayer membrane nanosized vesicles harboring a range of immune cell-derived surface receptors and effector molecules from parental cells. Immune cell-derived EVs are important mediators of intercellular communication that regulate specific mechanisms of adaptive and innate immune responses. However, the mechanisms underlying the antitumor effects of EVs are still being explored. Importantly, immune cell-derived EVs have some unique features, including accessibility, storage, ability to pass through blood-brain and blood-tumor barriers, and loading of various effector molecules. Immune cell-derived EVs have been directly applied or engineered as potent antitumor vaccines or for the diagnosis of clinical diseases. More research applications involving genetic engineering, membrane engineering, and cargo delivery strategies have improved the treatment efficacy of EVs. Immune cell-derived EV-based therapies are expected to become a separate technique or to complement immunotherapy, radiotherapy, chemotherapy and other therapeutic modalities. This review aims to provide a comprehensive overview of the characteristics and functions of immune cell-derived EVs derived from adaptive (CD4+ T, CD8+ T and B cells) and innate immune cells (macrophages, NK cells, DCs, and neutrophils) and discuss emerging therapeutic opportunities and prospects in cancer treatment.
Abstract. The aim of the present study was to evaluate the effect of a combination of dexmedetomidine and fentanyl on peripheral oxygen saturation (SpO 2 ) and hemodynamic stability in patients undergoing flexible bronchoscopy. One hundred patients undergoing elective flexible bronchoscopy were randomized into either a propofol-fentanyl group (PF group; n=50) or a dexmedetomidine-fentanyl group (DF group; n=50). SpO 2 values, heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), patients' cough scores and discomfort scores as determined by patients and bronchoscopists, levels of sedation, number of times that additional lidocaine was required, elapsed time until recovery, and adverse events were recorded. The mean SpO 2 values in the DF group were significantly higher than those in the PF group (P<0.01), and HR, SBP and DBP were significantly lower in the DF group than in the PF group (P<0.05). There were no statistically significant differences between the two groups in terms of cough scores or discomfort scores, sedation levels, or number of times that additional lidocaine was required (P>0.05). Elapsed time until recovery in the DF group was significantly longer than in the PF group (P=0.002). The incidence of hypoxemia was significantly lower in the DF group than in the PF group (P= 0.027), but the incidence of bradycardia was significantly higher in the DF group than in the PF group (P= 0.037). Dexmedetomidine-fentanyl was superior to propofol-fentanyl in providing satisfactory SpO 2 . Furthermore, dexmedetomidine-fentanyl attenuated hemodynamic responses during bronchoscopy and maintained hemodynamic stability in the early stage of the procedure. IntroductionFlexible bronchoscopy is commonly used for the diagnosis and management of a variety of pulmonary diseases. However, it is an invasive procedure that can induce coughing, pain, dyspnea and other adverse effects (1,2). The use of sedatives not only can increase patients' safety and comfort (3) but also can make it easier for the bronchoscopist to perform the procedure and thus avoid extending its duration (4). In addition to alleviating the physiological response to airway irritation during the procedure (5), the proper sedatives should have a rapid onset and a short duration of action, in addition to allowing rapid recovery.Propofol, a non-opioid and nonbarbiturate sedative hypnotic agent, is frequently used in the induction and maintenance of anesthesia. The properties of rapid onset and offset of action and of smooth recovery (6) make propofol an appealing agent alone or in combination with an opioid for procedural sedation (7-10). However, dose-dependent respiratory depression and hypoxemia are possible, owing to interactions and synergism between sedatives and opioids (11-13).Dexmedetomidine, a highly selective α 2 -adrenoceptor agonist, has an affinity for α 2 -adrenoceptors that is 8-fold greater than that of clonidine (14). In addition to providing sedative and analgesic effects (15), dexmedetomidine can be applied generally duri...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.