Tin monoselenide (SnSe), which belongs to group IV–VI monochalcogenides, has obtained significant attention in the field of photodetection owing to its ultrahigh carrier mobilities. However, the great challenges of preparing high-quality films and high-performance devices still need to be conquered. Herein, high-density continuous SnSe films were deposited on a Si substrate using magnetron sputtering technology, and a self-driven photovoltaic-type broadband photodetector from the visible light range (VIS) to the near-infrared (NIR) range based on SnSe/Si heterojunction was constructed. Owing to its high carrier mobility, narrow band gap structure, and strong internal electric field, the SnSe/Si heterojunction device exhibits an ultrafast response and high responsivity (R), which achieves a wide spectral response of 405–980 nm. Under zero bias voltage, the greatest R and detectivity (D*) of the heterojunction were 704.6 mA/W and 3.36 × 1011 Jones at 405 nm. Furthermore, the device had a fast response time (rise time) of 20.4 μs at 980 nm of illumination. This work provides a new strategy for the fabrication of high-performance, low-cost, and self-driven photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.