Interatomic potentials based on neural-network machine learning (ML) approach to address the longstanding challenge of accuracy versus efficiency in molecular-dynamics simulations have recently attracted a great deal of interest. Here, utilizing Pd-Si system as a prototype, we extend the development of neural-network ML potentials to compounds exhibiting various types of bonding characteristics. The ML potential is trained by fitting to the energies and forces of both liquid and crystal structures firstprinciples calculations based on density-functional theory (DFT). We show that the generated ML potential captures the structural features and motifs in Pd82Si18 and Pd75Si25 liquids more accurately than the existing interatomic potential based on embedded-atom method (EAM). The ML potential also describes the solid-liquid interface of these systems very well. Moreover, while the existing EAM potential fails to describe the relative energies of various crystalline structures and predict wrong ground-state structures at Pd3Si and Pd9Si2 composition, the developed ML potential predicts correctly the groundstate structures from genetic algorithm search. The efficient ML potential with DFT accuracy from our study will provide a promising scheme for accurate atomistic simulations of structures and dynamics of complex Pd-Si system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.