The para-Claisen rearrangement of aryl 1propargyl ethers involves two-step [3,3]-sigmatropic rearrangements and dearomatization process, which has high activation barriers and is of challenge. Here we discovered thermal para-Claisen rearrangement of naphthyl 1-propargyl ethers, and it enabled the formation of formal para-CÀ H propargylation products upon rearomatization. Chirality transfer occurred if optically active propargyl ethers were employed, leading to the construction of aryl/propargyl-containing stereogenic centers. Moreover, catalytic asymmetric dearomatization of naphthyl 1-propargyl ethers with different substitution at para-position gave access to benzocyclohexenones bearing all-carbon quaternary stereocenters. The reaction was accelerated by a chiral N,N'-dioxide/Co(OTf) 2 complex catalyst to achieve high yields (up to 98 %) and high enantioselectivities (up to 93 % ee). The DFT calculations and experimental results provided important clues to clarify the para-Claisen rearrangement process as well as the chiral induction and remote delivery.
A chiral
thulium(III)-catalyzed sulfur-conjugation addition reaction
of dialkynylphosphine oxides to construct P-stereogenic
centers has been developed. Dialkynylphosphine oxides bearing aryl,
alkyl, alkenyl substitution at the alkyne terminus position were tolerated
under the reaction conditions. The corresponding P,S-containing compounds were obtained in moderate
to good yields (up to 92% yield) with high Z/E ratios and enantioselectivities (up to >95/5 Z/E and 97% ee), which could be transformed
into
versatile optically active phosphine oxide derivatives. X-ray single
crystal structures of chiral N,N′-dioxides
with rare-earth metal triflates revealed how the metal center and
ligand structure affect the enantioselectivity.
The Rho family GTPases are crucial drivers of tumor growth and metastasis. However, it is difficult to develop GTPases inhibitors due to a lack of well‐characterized binding pockets for compounds. Here, through molecular dynamics simulation of the RhoA protein, a groove around cysteine 107 (Cys107) that is relatively well‐conserved within the Rho family is discovered. Using a combined strategy, the novel inhibitor DC‐Rhoin is discovered, which disrupts interaction of Rho proteins with guanine nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). Crystallographic studies reveal that the covalent binding of DC‐Rhoin to the Cys107 residue stabilizes and captures a novel allosteric pocket. Moreover, the derivative compound DC‐Rhoin04 inhibits the migration and invasion of cancer cells, through targeting this allosteric pocket of RhoA. The study reveals a novel allosteric regulatory site within the Rho family, which can be exploited for anti‐metastasis drug development, and also provides a novel strategy for inhibitor discovery toward “undruggable” protein targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.