Soybean is a major legume crop originating in temperate regions, and photoperiod responsiveness is a key factor in its latitudinal adaptation. Varieties from temperate regions introduced to lower latitudes mature early and have extremely low grain yields. Introduction of the long-juvenile (LJ) trait extends the vegetative phase and improves yield under short-day conditions, thereby enabling expansion of cultivation in tropical regions. Here we report the cloning and characterization of J, the major classical locus conferring the LJ trait, and identify J as the ortholog of Arabidopsis thaliana EARLY FLOWERING 3 (ELF3). J depends genetically on the legume-specific flowering repressor E1, and J protein physically associates with the E1 promoter to downregulate its transcription, relieving repression of two important FLOWERING LOCUS T (FT) genes and promoting flowering under short days. Our findings identify an important new component in flowering-time control in soybean and provide new insight into soybean adaptation to tropical regions.
Primordial black holes and secondary gravitational waves can be used to probe the small scale physics at very early time. For secondary gravitational waves produced after the horizon reentry, we derive an analytical formula for the time integral of the source and analytical behavior of the time dependence of the energy density of induced gravitational waves is obtained. By proposing a piecewise power law parametrization for the power spectrum of primordial curvature perturbations, we use the observational constraints on primordial black hole dark matter to obtain an upper bound on the power spectrum, and discuss the test of the model with future space based gravitational wave antenna.
To alleviate the stress of continuous cropping for cucumber continuous cropping (CCC) system, a beneficial fungus Trichoderma harzianum SQR-T037 (SQR-T037) was isolated and applied to soil to degrade allelochemicals exuded from cucumber plants in a Rhizobox experiment. The following phenolic acids (PAs), classified as allelochemicals, were isolated and identified from cucumber rhizospheres: 4-hydroxybenzoic acid, vanillic acid, ferulic acid, benzoic acid, 3-phenylpropionic acid, and cinnamic acid. Mixed PAs added in potato dextrose broth, each with 0.2 gram per liter, were completely degraded by SQR-T037 after 170 h of incubation. In Rhizobox experiments, inoculation of SQR-T037 in the CCC soil also degraded the PAs exuded from cucumber plant roots. This degradation was 88.8% for 4-hydroxybenzoic acid, 90% for vanillic acid, 95% for benzoic acid, and 100% for ferulic acid, 3-phenylpropionic acid, and cinnamic acid at 45 days after plantation. Simultaneously, a significant (p ≥ 0.05) decrease in the disease index of Fusarium wilt and an increase in dry weights of cucumber plants were obtained in pot experiments by application of SQR-T037. This was mostly attributed to degradation of PAs exuded from cucumber roots in CCC soil by SQR-T037 and alleviation of the allelopathic stress. Application of beneficial microorganisms, such as SQR-T037 that biodegrades allelochemicals, is a highly efficient way to resolve the problems associated with continuous cropping system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.