Cerebral ischemic injury is one of the debilitating diseases showing that inflammation plays an important role in worsening ischemic damage. Therefore, studying the effects of some potential anti-inflammatory compounds can be very important in the treatment of cerebral ischemic injury. Methods: This study investigated anti-inflammatory effects of triblock copolymer nanomicelles loaded with curcumin (abbreviated as NC) in the brain of rats following transient cerebral ischemia/reperfusion (I/R) injury in stroke. After preparation of NC, their protective effects against bilateral common carotid artery occlusion (BCCAO) were explored by different techniques. Concentrations of free curcumin (C) and NC in liver, kidney, brain, and heart organs, as well as in plasma, were measured using a spectrofluorometer. Western blot analysis was then used to measure NF-κB-p65 protein expression levels. Also, ELISA assay was used to examine the level of cytokines IL-1β, IL-6, and TNF-α. Lipid peroxidation levels were assessed using MDA assay and H&E staining was used for histopathological examination of the hippocampus tissue sections. Results: The results showed a higher level of NC compared to C in plasma and organs including the brain, heart, and kidneys. Significant upregulation of NF-κB, IL-1β, IL-6, and TNF-α expressions compared to control was observed in rats after induction of I/R, which leads to an increase in inflammation. However, NC was able to downregulate significantly the level of these inflammatory cytokines compared to C. Also, the level of lipid peroxidation in pre-treated rats with 80mg/kg NC was significantly reduced. Conclusion:Our findings in the current study demonstrate a therapeutic effect of NC in an animal model of cerebral ischemia/reperfusion (I/R) injury in stroke through the downregulation of NF-κB-p65 protein and inflammatory cytokines.
The aim of this study was to investigate the effect of vestibular disruption on autophagy-related proteins and the tumour-associated pathway P13K/Akt in rat sleep and its hypothalamus tissue and to examine whether catechins trigger tumour autophagy. Healthy adult male rats were randomly selected and divided into the vestibular damage group, the sham operation group, and the control group, with 8 rats in each group. A vestibular damage model was established through penetrating the tympanic membrane of the external auditory canal by injecting sodium p-aminophenylarsonate. The electroencephalogram (EGG) activity was used to record the sleep-wakefulness cycle of rats, and the expression levels of hypothalamic orexin (orexin) mRNA and autophagy proteins were detected. Primary hippocampal neurons were intervened with orexin at different concentrations and at different times to detect cell viability and the expression of autophagy protein and P13K/Akt signal pathway protein. The results showed that compared with the control group and the sham operation group, NREM duration in the vestibular damage group decreased significantly ( P < 0.05 ), while its W time increased significantly ( P < 0.05 ). The expression level of orexin mRNA in the hypothalamus of the vestibular damage group was significantly higher than that of the other two groups ( P < 0.05 ), the expression of autophagy microtubule-related proteins LC3B and Beclin-1 increased significantly ( P < 0.05 ), and the protein expression level of p62 decreased significantly ( P < 0.05 ). After orexin intervention, compared with the control group, the expression of Beclin-1 protein that positively correlated with autophagy decreased significantly ( P < 0.05 ) and the expression of mTOR, PDK1, and Akt protein increased significantly ( P < 0.05 ). Compared with the orexin intervention group, the expression of Beclin-1 and LC3B proteins in cells of the orexin receptor inhibitor (Almorexant) group, the autophagy activator (Rapamycin) group, the orexin + Almorexant group, and the orexin + Rapamycin group increased significantly ( P < 0.05 ), and the expression of mTOR, PDK1, and Akt proteins decreased significantly ( P < 0.05 ). Catechins trigger autophagy in part by regulating the p-Akt/p-mTOR and P13K pathways and by stimulating the MAPK pathway. Catechins initiate apoptosis in common tumour types of hepatocellular carcinoma cells by activating autophagy-related pathways. The conclusion is that vestibular damage can affect the sleep-wakefulness cycle of rats; the level of autophagy in hypothalamic tissue is upregulated and may affect cell proliferation and activity through mTOR-P13K/Akt, which has a certain reference value for tumor formation and provides a basis for the research of insomnia or sleep disorders caused by tumors. Autophagy activation is a key process by which catechins promote apoptosis in tumour cells, providing an avenue for more research on the use of catechins-rich diets for cardiovascular protection in the treatment of tumours.
Stroke has become the most common cause of death among residents in China, among which ischemic stroke accounts for the vast majority reaching 70% to 80%. It is of great importance to actively investigate the protective mechanism of cerebral ischemia injury after IS (ischemic stroke). We constructed cerebral ischemia injury models in vivo MACO rat and in vitro (oxygen-glucose deprivation cell model) and set up different interference groups. RT-PCR (reverse transcription PCR) was conducted to detect the expression of lncRNA in neuronal cells, brain tissue, and plasma of different groups, and ELISA (enzyme-linked immunosorbent assay) and western blot were used to detect the expression of the protein in neuronal cells, brain tissue, and plasma of different groups. Cell activity was detected by the CCK-8 assay, while cell apoptosis was examined by TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. In the rats’ neuronal cells and brain tissue, curcumin can inhibit the expression of lncRNA GAS5 (long noncoding RNA growth arrest-specific 5). In oxygen-glucose-deprived neuronal cells in vitro, curcumin and low-expressed lncRNA GAS5 can enhance cell activity and decline cell apoptosis, but the addition of curcumin and overexpressed lncRNA GAS5 can make this phenomenon disappear. In neuronal cells, plasma, and brain tissue, curcumin and the low-expressed lncRNA GAS5 can inhibit the expression of IL-1β (interleukin 1 beta), TNF-α (tumor necrosis factor alpha), IL-6 (interleukin 6), Sox2 (SRY-box transcription factor 2), Nanog, and Oct4 (octamer-binding transcription factor 4). However, overexpressed lncRNA GAS5 and curcumin made the inhibitory effect disappear. In conclusion, this study demonstrated that curcumin could inhibit the expression of lncRNA GAS5, thereby inhibiting the expression of inflammation-related factors IL-1β, TNF-α, and IL-6, and ultimately achieve the purpose of attenuating cerebral ischemic cell damage. However, curcumin and lncRNA GAS5 may not alleviate cerebral ischemic cell damage by affecting stem cell differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.