Circular RNAs (circRNAs) have been identified play a vital role in various different types of cancer via sponging miRNAs (microRNAs). However, their role in lung adenocarcinoma (LUAD) remains largely unclear. In this study, we systematically characterized the circRNA expression profiles in the LUAD cancer tissues and paired adjacent noncancerous tissues. Three circRNAs were found to be significantly upregulated. Among them, has-circRNA-002178 was further confirmed to be upregulated in the LUAD tissues, and LUAD cancer cells. Subsequently, we also found has-circRNA-002178 could enhance PDL1 expression via sponging miR-34 in cancer cells to induce T-cell exhaustion. More importantly, circRNA-002178 could be detected in exosomes of plasma from LUAD patients and could serve as biomarkers for LUAD early diagnosis. Finally, we found circRNA-002178 could be delivered into CD8 + T cells to induce PD1 expression via exosomes. Taken together, our study revealed that circRNA-002178 could act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma.
Fos-related antigen 2 (FRA-2/FOSL2) belongs to the AP-1 transcription factor family. Although FOSL2 has been shown to be involved in diverse physiological and pathological processes, very little is known about the signalling pathways that regulate FOSL2 expression and the mechanisms of FOSL2 function. Here, we show that FOSL2 expression is regulated by TGF-β1 and that FOSL2 is required for TGF-β1-induced migration. We demonstrate that FOSL2 interacts with Smad3 in vitro and in vivo and thus up-regulates TGF-β1-induced signalling responses. Mechanistically, FOSL2 promotes P300 binding to Smad3 and the acetylation of Smad3 by P300. Furthermore, we show that the expression of FOSL2 correlates with activated Smad3 expression in clinical non-small cell lung cancer (NSCLC) samples. In summary, the present study indicates that FOSL2 facilitates TGF-β1-induced migration by interaction with Smad3 in NSCLC and suggests FOSL2 as a potential therapeutic target for NSCLC.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. miR-455-5p has increased expression and the ability to promote tumorigenesis in certain cancers. However, the role of miR-455-5p in NSCLC has not been sufficiently investigated. SOCS3 (suppressor of cytokine signaling 3), an important tumor suppressor, is often aberrantly inactivated in various tumors, but it is currently unclear whether SOCO3 is a target of miR-455-5p. In the present study, we investigated the role of miR-455-5p in NSCLC. We found that the expression of miR-455-5p was up-regulated in NSCLC tumor tissues compared to corresponding noncancerous tissues, and its expression was correlated with metastasis and tumor node metastasis in NSCLC tissue. We then showed that miR-455-5p promoted migration, invasion and proliferation in NSCLC cell lines. Additionally, we also found that SOCS3 was the direct target gene of miR-455-5p. Consistently, the expression of SOCS3 was negatively correlated with the expression of miR-455-5p in NSCLC tissues. We further show that aberrant miR-455-5p expression is partially controlled by activated ERK signaling in NSCLC. Therefore, miR-455-5p could enhance the growth and metastasis of NSCLC by inhibiting SOCS3, thus providing a potential molecular therapeutic target for the treatment of NSCLC patients.
The emerging evidence has demonstrated the critical roles of long non-coding RNAs (lncRNAs) as regulators in the tumor immune microenvironment (TIME). However, the tumor immune infiltration-associated lncRNAs and their clinical significance in colon cancer have not yet been thoroughly investigated. This study performed an integrative analysis of lncRNA expression profiles and immune cell infiltration profiles and identified 258 immune infiltration-associated lncRNAs. Of them, four lncRNAs (AC008494.3, LINC00926, AC022034.1, and SNHG26) were significantly and independently associated with the patient’s overall survival. Finally, we developed a tumor immune infiltration-associated lncRNA signature (TIILncSig) comprising of these four lncRNAs, which can divide colon cancer patients of The Cancer Genome Atlas (TCGA) into high-risk and low-risk groups with a significantly different outcome [Hazard ratio (HR) = 2.718, 95% CI = 1.955–3.779, p < 0.001]. Prognostic performance of the TIILncSig was further validated in another independent colon cancer cohort (HR = 1.832, 95% CI = 1.045–3.21, p = 0.034). Results of multivariate Cox regression and stratification analysis demonstrated that the TIILncSig is an independent predictive factor from other clinical features (HR = 2.687, 95% CI = 1.912–3.776, p < 0.001 for TCGA cohort and HR = 1.837, 95% CI = 1.047–3.223, p = 0.034 for GSE17538 cohort). Literature analysis provided experimental evidence supporting roles of the TIILncSig in cancer carcinogenesis and progression and immune regulation. Summary, our study will help to understand the mechanisms of lncRNAs in immune regulation in the tumor microenvironment and provide novel biomarkers or targets for prognosis prediction and therapy decision-making for patients with colon cancer.
BackgroundLung cancer is the leading cause of death from cancer, and lung adenocarcinoma (LUAD) is the most common form. Despite the great advances that has been made in the diagnosis and treatment for LUAD, the pathogenesis of LUAD remains unclear. In this study, we aimed to identify the function of circKEAP1 derived from the exon of KEAP1 in LUAD.MethodsThe expression profiles of circRNAs in LUAD tissues and adjacent non-tumor tissues were analyzed by Agilent Arraystar Human CircRNA microarray. The levels and prognostic values of circKEAP1 in tissues and cancer cell lines were determined by quantitative real-time PCR (qRT-PCR). Subsequently, the effects of circKEAP1 on tumor growth were investigated by functional experiments in vitro and in vivo. Mechanistically, the dual luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation experiments were performed to confirm the interaction between circKEAP1 and miR-141-3p in LUAD.ResultsWe found circKEAP1 was significantly downregulated in LUAD tissues and repressed tumor growth both in vitro and in vivo. Mechanistically, circKEAP1 competitively binds to miR-141-3p and relive miR-141-3p repression for its host gene, which activated the KEAP1/NRF2 signal pathway, and finally suppresses the tumor progress. Our findings suggest that circKEAP1 inhibits LUAD progression through circKEAP1/miR-141-3p/KEAP1 axis and it may serve as a novel method for the treatment of LUAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.