We report a novel microfluidic device use for sandwich enzyme-linked immunoassay assay (ELISA). The related procedures including the introduction of reagents, dilution and distribution of samples, as well as immobilization of enzyme can be readily carried out on a poly (dimethylsiloxane) (PDMS) chip. Particularly, this microfluidic chip comprising of two distinct parallel units, and has an identical dimension as a conventional microtiter plate, which offers access to the directly quantitative detection by the microplate reader. Gradient-concentration reacting solutions at six different concentrations level generated by the microfluidic channel network are simultaneously transported to 24 reaction chambers to form enzymatic products. Alkaline phosphatase (ALP), 4-methylumbelliferyl phosphate (4-MUP) and KH(2)PO(4) are used as enzyme-substrate-inhibitor model, to demonstrate the utility of the developed microchip-based enzyme inhibitor assay. Various conditions such as the surface treatment of chip channels, fluids velocities, substrate concentration, and buffer pH are investigated. The present microfluidic device for ELISA holds several advantages, for instance frugal usage of samples and reagents, less of operating time, favorably integrated configuration, ease of manipulation, and could be explored to a variety of high throughput drug screening.
Behavioral Caenorhabditis elegans mutants are sought for the purposes of neurobiological research. Until now, large numbers of worms with neuronal defects have been obtained through mutagenesis techniques. However, the existing screening procedures are not only time-consuming and low-throughput, but also tedious and labor-intensive. Therefore, developing a rapid and convenient method to overcome these difficulties is necessary. The present study demonstrates for the first time a microdevice for the rapid screening of chemotaxis-defective mutants based on their chemotactic response. The microchip is capable of automatic introduction, local immobilization, and controllable generation of concentration gradients during the screening assays. With this device, six C. elegans behavioral assays can be performed using various attractants without requiring anesthetics for local capture, and ten mutants are effectively isolated from 10(4) mutagenized worms in 100 min. The microfluidics-based method is robust enough to sort the chemotaxis-defective worms with 91 % accuracy from a large population of wild type animals during a mutagenesis screen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.