China has entered the stage where urban agglomerations underpin and spearhead the county’s urbanization. Urban agglomerations in China have become economic growth poles, and the constantly improving transport networks in these agglomerations bring about opportunities for redistributing labor forces and promoting regional economic development, trade, and social progress for all. This is the foundation and fuel for urban development. However, lack of knowledge of the spatial features of, and the interrelationship between, regional urbanization and traffic accessibility constrains effective urban planning and decision-making. To fill this gap, this study attempted to evaluate the spatiotemporal distribution characteristics of urbanization levels and traffic accessibility in 1995, 2005, and 2015 in the Middle Reaches of the Yangtze River Urban Agglomerations (MRYRUA), China. The spatial interaction, spatial dependence effect, and spatial spillover effect between urbanization and traffic accessibility were tested by employing the bivariate spatial autocorrelation model and spatial regression models. The results showed that the urbanization level and traffic accessibility in the MRYRUA shot up over time and manifested similar spatial distribution characteristics. The global bivariate spatial autocorrelation coefficients were positive and significant during the period studied, and the main relationship types were the high urbanization and high traffic accessibility types and low urbanization and low traffic accessibility types. The spatial regression results showed that there was a significant positive association between urbanization and traffic accessibility, but with a significant scale effect. Urbanization is not only affected by the traffic accessibility of the individual grid unit but also by those in the adjacent or further grid units. The findings in this study provide important implications for urbanization development and transportation planning. The spatial dependence effect and spatial spillover effect between urbanization and traffic accessibility should be considered in future urban planning and transportation planning. The rational allocation of resources and inter-regional joint management can be an effective path toward regional sustainability.
Urban agglomerations have gradually formed in different Chinese cities, exerting great pressure on the ecological environment. Ecosystem health is an important index for the evaluation of the sustainable development of cities, but it has rarely been used for urban agglomerations. In this study, the ecosystem health in the middle reaches of the Yangtze River Urban Agglomeration was assessed using the ecosystem vigor, organization, resilience, and services framework at the county scale. A GeoDetector was used to determine the effects of seven factors on ecosystem health. The results show that: (1) The spatial distribution of ecosystem health differs significantly. The ecosystem health in the centers of Wuhan Metropolis, Changsha–Zhuzhou–Xiangtan City Group, and Poyang Lake City Group is significantly lower than in surrounding areas. (2) Temporally, well-level research units improve gradually; research units with relatively weak levels remain relatively stable. (3) The land use degree is the main factor affecting ecosystem health, with interactions between the different factors. The effects of these factors on ecosystem health are enhanced or nonlinear; (4) The effect of the proportion of construction land on ecosystem health increases over time. The layout used in urban land use planning significantly affects ecosystem health.
To mitigate climate change, reducing carbon dioxide (CO2) emissions is of paramount importance. China, the largest global CO2 emitter, proposes to peak carbon emissions by 2030 and become carbon neutral by 2060; transforming the energy structure represents one of the primary means of addressing carbon emissions; thus, it is essential to investigate the impacts of alternate energy sources throughout the country. Based on energy consumption and carbon emissions data from 30 provincial-level administrative regions in China (excluding Tibet, Hong Kong, Taiwan, and Macau, due to the lack of data), the study here investigated the shares of coal, petroleum, natural gas, and non-fossil energy sources (i.e., hydropower, nuclear power, wind power, solar power, and biomass power), as they relate to total, per capita, and per unit GDP CO2 emissions via spatial regression. The results showed that: (1) The epicenters of coal and carbon emissions have shifted from the east to the central and western regions; (2) There is a significant correlation between energy structure and carbon emissions: coal has a positive effect, petroleum’s effects are positive at first, and negative subsequently; while both natural gas and non-fossil energy sources have a negative impact; (3) Provincial-level carbon emissions are affected by energy structure, carbon emissions in neighboring regions, and other factors.
<div><span>With the rapid development of urbanization in China, urban circles and urban agglomerations are gradually formed among different cities, which in turn has brought large pressure to the ecological environment. As an important monitoring index for evaluating the sustainable development of cities, quantified evaluation on the eosystem health is lacked for urban agglomerations. In this study, ecosystem health was assessed based on the framework of ecosystem vigor, organization, resilience, and services (VORS) in the Middle Reaches of the Yangtze River Urban Agglomerations (MRYRUA) in 2000, 2005, 2010, and 2015 with county as research units. Using GeoDetector to quantitatively analyze the impact of seven factors (including the proportion of construction land, forest land, and water, land use degree, population, average annual precipitation, and digital elevation model (DEM)) on ecosystem health in different periods. The results showed that: (1) There were significant differences in the spatial distribution of ecosystem health. The ecosystem health in the central area of Wuhan Metropolis, Changsha-Zhuzhou-Xiangtan City Group, and Poyang Lake City Group were significantly lower than the surrounding areas; (2) From the time scale, the research units of ordinary well level gradually develop to relatively well and well levels. The research units of relatively weak and weak level remain relatively stable. (3) Land use degree was the main factor affecting on ecosystem health. Moreover, there were interactions between different factors affecting. The impact of factors on ecosystem health were bi-enhanced or nonlinear enhanced. (4) The impacts of the proportion of construction land on ecosystem health had become greater over the time, and risen from fourth in 2000 to second in 2015. Therefore, a reasonable layout of urban land use planning has an important impact on the ecosystem health.</span></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.