The Pacific oyster Crassostrea gigas is one of the dominant sessile inhabitants of the estuarine intertidal zone, which is a physically harsh environment due to the presence of a number of stressors. Oysters have adapted to highly dynamic and stressful environments, but the molecular mechanisms underlying such stress adaptation are largely unknown. In the present study, we examined the proteomic responses in the gills of C. gigas exposed to three stressors (high temperature, low salinity, and aerial exposure) they often encounter in the field. We quantitatively compared the gill proteome profiles using iTRAQ-coupled 2-D LC-MS/MS. There were 3165 identified proteins among which 2379 proteins could be quantified. Heat shock, hyposalinity, and aerial exposure resulted in 50, 15, and 33 differentially expressed gill proteins, respectively. Venn diagram analysis revealed substantial different responses to the three stressors. Only xanthine dehydrogenase/oxidase showed a similar expression pattern across the three stress treatments, suggesting that reduction of ROS accumulation may be a conserved response to these stressors. Heat shock caused significant overexpression of molecular chaperones and production of S-adenosyl-l-methionine, indicating their crucial protective roles against protein denature. In addition, heat shock also activated immune responses, Ca(2+) binding protein expression. By contrast, hyposalinity and aerial exposure resulted in the up-regulation of 3-demethylubiquinone-9 3-methyltransferase, indicating that increase in ubiquinone synthesis may contribute to withstanding both the osmotic and desiccation stress. Strikingly, the majority of desiccation-responsive proteins, including those involved in metabolism, ion transportation, immune responses, DNA duplication, and protein synthesis, were down-regulated, indicating conservation of energy as an important strategy to cope with desiccation stress. There was a high consistency between the expression levels determined by iTRAQ and Western blotting, highlighting the high reproducibility of our proteomic approach and its great value in revealing molecular mechanisms of stress responses.
Sociocultural factors influence depression levels in Chinese female infertile patients. The unique aspects of Chinese culture may have a negative mental impact on the patients, and cultural factors should be taken into consideration in the development of coping strategies for Chinese infertile women.
BackgroundMurine norovirus (MNV) is recognized as the most prevalent viral pathogen in captive mouse colonies. The rapid detection assay for MNV would be a useful tool for monitoring and preventing MNV infection. A recombinase polymerase amplification (RPA) assay was established in this study to provide a solution for rapid and sensitive detection of MNV.ResultsThe detection limit of the RT-RPA assay for the detection of MNV was 1 × 102 copies of RNA molecules per reaction. The assay was specific since there was no cross-reaction with other common murine viruses. In addition, the broad reactivity of the RT-RPA assay was validated using the synthesized template carrying seven point mutations among several MNV strains. The MNV RT-RPA assay could detect as few as 1 × 102 copies of the mutant per reaction, suggesting the assay could be broadly reactive against a large diversity of MNV strains. Forty eight clinical samples including 16 gastric tissue specimens, 16 cecal tissue specimens and 16 fecal specimens were tested for the validation of the new developed RT-RPA assay. The detection results of RT-RPA and RT-qPCR for clinical samples were very similar, except that a gastric tissue sample which was positive by RT-qPCR, with a RNA titer of 27 copies, was negative by RT-RPA.ConclusionsA broadly reactive RT-RPA assay was successfully established for MNV detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.