This review aims to highlight the current role of microchip CE (MCE) in clinical analysis to date, and also its future potential in this important area. One of the most notable advancements in separation science, which has accelerated in the last decade, has been the use of plastic and glass microchips to achieve high-speed electrophoresis separations in seconds, requiring only pico or nanolitre sample volumes. So far, in the clinical laboratory, MCE has lent itself to the resolution of very complex challenging analytes such as DNA, RNA, protein analysis, cellular components and other disease biomarkers. At present, most basic clinical laboratories rely heavily upon various kinds of enzymatic immunoassays as these methods offer speed, specificity, reliability and are well established analytical methods. However, this is not always the case, as with all analytical methods there are limitations, and sometimes enzymatic-based assays can be challenged by low-level concentration of target analytes present in samples resulting in high RSD values and results that cannot be interpreted. In some cases, this difficulty can be exasperated when complex sample matrices are presented for analysis, and interfering components result in highly exaggerated results from unwanted extra enzymatic binding. MCE may have a role in providing alternative highly sophisticated automated clinical analysis using state-of-the-art methodologies.
Vehicle sensor networks (VSNs) are ushering in a promising future by enabling more intelligent transportation systems and providing a more efficient driving experience. However, because of their inherent openness, VSNs are subject to a large number of potential security threats. Although various authentication schemes have been proposed for addressing security problems, they are not suitable for VSN applications because of their high computation and communication costs. Chuang and Lee have developed a trust-extended authentication mechanism (TEAM) for vehicle-to-vehicle communication using a transitive trust relationship, which they claim can resist various attacks. However, it fails to counter internal attacks because of the utilization of a shared secret key. In this paper, to eliminate the vulnerability of TEAM, an enhanced privacy-preserving authentication scheme for VSNs is constructed. The security of our proposed scheme is proven under the random oracle model based on the assumption of the computational Diffie–Hellman problem.
Tomato is one of the most important vegetables worldwide. It is considered a mainstay of many countries’ economies. However, tomato crops are vulnerable to many diseases that lead to reducing or destroying production, and for this reason, early and accurate diagnosis of tomato diseases is very urgent. For this reason, many deep learning models have been developed to automate tomato leaf disease classification. Deep learning is far superior to traditional machine learning with loads of data, but traditional machine learning may outperform deep learning for limited training data. The authors propose a tomato leaf disease classification method by exploiting transfer learning and features concatenation. The authors extract features using pre‐trained kernels (weights) from MobileNetV2 and NASNetMobile; then, they concatenate and reduce the dimensionality of these features using kernel principal component analysis. Following that, they feed these features into a conventional learning algorithm. The experimental results confirm the effectiveness of concatenated features for boosting the performance of classifiers. The authors have evaluated the three most popular traditional machine learning classifiers, random forest, support vector machine, and multinomial logistic regression; among them, multinomial logistic regression achieved the best performance with an average accuracy of 97%.
We present a detailed study on the RSS-based location techniques in wireless sensor networks (WSN). There are two aspects in this paper. On the one hand, the accurate RSSI received from nodes is the premise of accurate location. Firstly, the distribution trend of RSSI is analyzed in this experiment and determined the loss model of signal propagation by processing experimental data. Secondly, in order to determine the distance between receiving nodes and sending nodes, Gaussian fitting is used to process specific RSSI at different distance. Moreover, the piecewise linear interpolation is introduced to calculate the distance of any RSSI. On the other hand, firstly, the RSSI vector similarity degree (R-VSD) is used to choose anchor nodes. Secondly, we designed a new localization algorithm which is based on the quadrilateral location unit by using more accurate RSSI and range. Particularly, there are two localization mechanisms in our study. In addition, the generalized inverse is introduced to solve the coordinates of nodes. At last, location error of the new algorithm is about 17.6% by simulation experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.