The main purpose of this work was to investigate the linear tearing properties of PA6/MXD6 films prepared by simultaneous biaxial stretching. The compatibility between PA6 and MXD6 and the thermal properties of the PA6/MXD6 composites were also investigated. The results showed that the tearing deviation of the blending films decreased from 100 to 3.8% when the MXD6 blend ratio increased from 0 to 25%, but the deviation increased when the MXD6 blend ratio continue to increase. It means that the PA6/MXD6 films with addition of 25 wt% MXD6 exhibited the best linear tearing properties. The differential scanning calorimetry results revealed that the addition of MXD6 reduced the melting temperature from 227.5 to 224.8°C and crystallization temperature of PA6 from 179.3 to 175°C due to the benzene ring structure of MXD6. The dynamic mechanical analysis results indicated that MXD6 exhibits favorable compatibility with PA6. In addition, it was found that the barrier properties of the biaxially oriented PA6/MXD6 films were extremely improved with the increase of MXD6 content.
In this study, biaxially oriented polyamide 6/polyketone/graphene oxide (PA6/PK/GO) films were prepared by melt blending then simultaneously biaxially stretched process, with the aim of obtaining high barrier properties films and improvements in their mechanical properties. The oxygen transmission rate of biaxially oriented PA6/PK/GO film significantly decreased with addition of polyketone and GO. It is surprising that the biaxially oriented process can excellently improve the barrier properties of biaxially oriented PA6/PK/ GO film. For example, there was 94.7% OTR reduction of the film containing 20 wt% PK and 0.08 wt% GO compared with PA6 film at a stretching ratio of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.