The results of this study demonstrate that, in the nonhuman primate model, it is possible for vaccine-elicited immune responses to prevent infection after intravaginal administration of virus.
After more than 25 years of human immunodeficiency virus (HIV) research, a prophylactic vaccine able to control or prevent the worldwide spread of HIV/AIDS remains an elusive goal. Recent results in Thailand with the recombinant canary pox (ALVAC-HIV, vCP1521; Sanofi-Pasteur) prime-gp120 (AIDSVAX B/E) protein boost vaccine approach give us hope that such a vaccine is achievable (45). Nevertheless, the results from this trial as well as the disappointing outcome of the Step Study trial (7, 29, 46) vividly highlight the need to better understand the immune correlates of protection and the immune responses engendered by the diverse new vaccine technologies currently under evaluation (13,18,20,49). In the case of viral vectors, this is particularly critical, as the spectrum of immune responses elicited in animal models does not necessarily predict those eventually observed in human clinical trials and will require more thorough evaluations in order to identify the most predictive models. At the moment, nonhuman primate models, such as simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) infection of macaques appear to be the most informative for guiding vaccine development (3,24,47,55), and more rigorous application of these models has begun to yield new and encouraging insights into protective immunity (5,19,27,56). Moreover, as most HIV transmissions occur through mucosal membranes, understanding the correlates of protection, following successful vaccinations, against mucosal challenge is of strong interest.Alphaviruses are positive-sense single-stranded 11.5-kb RNA viruses in the Togaviridae family. They are relatively simple enveloped viruses of approximately 60-nm diameter that have a cytoplasmic RNA-based life cycle and mature at the plasma membranes of infected cells. Recombinant alphavirus replicon particles used for vaccine applications are composed of a replicon vector that encodes the viral replicases (nonstructural proteins [NSPs]) and the vaccine antigen of interest and two packaging vectors that encode the major viral structural proteins (capsid and glycoproteins E1 and E2) required for particle formation. The chimeric (VEE/SIN) alpha-* Corresponding author. Mailing address: Novartis Vaccines and Diagnostics,
There is an urgent need to develop vaccines that can elicit immunological memory responses against HIV. Using the rhesus macaque model and a combination of intranasal (IN) and parenteral immunizations with DNA or protein adsorbed to microparticles or mixed with mucosal adjuvants we sought to induce anti-HIV memory-type immune responses in both the mucosal and systemic compartments. Prime/boost immunizations were performed through five IN immunizations alone with HIV-env oligomeric gp140 (Ogp140) or HIV-gag-p24 mixed with Escherichia coli heat labile-derived mutant adjuvants or two parenteral immunizations with DNA encoding HIV-env or -gag adsorbed to microparticles followed by three IN immunizations with p24 gag protein and the mutant adjuvants. Both modes of immunizations induced anti-gp140 plasma and vaginal IgG and IgA as well as interferon (IFN)-gamma secreting peripheral blood mononuclear cells (PBMC) after HIV-env and -gag peptide restimulation. After a resting period of 4 months, when the levels of humoral and cellular responses had decreased, intramuscular (IM) booster immunizations with p55-gag protein adsorbed to microparticles and Ogp140 in MF59 oil in water emulsion significantly enhanced anti-HIV plasma and vaginal antibody, as well as peripheral blood IFN-gamma responses in all groups of vaccinated macaques. Importantly, plasma neutralization activity against both homologous and heterologous HIV strains was observed in all groups following the IM booster immunizations with protein. These findings show that IN priming alone or combinations of parenteral and IN immunizations followed by IM booster immunizations hold promise to significantly enhance mucosal and systemic memory-type immune responses against HIV-1 antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.