BackgroundThe gastrointestinal tracts of animals are home to large, complex communities of microbes. The compositions of these communities ultimately reflect the coevolution of microorganisms with their animal host and are influenced by the living environment, diet and immune status of the host. Gut microbes have been shown to be important for human disease and health, but little research exists in the gut microbiome of the Amur tiger, which is one of the most endangered species in the world.ResultsIn this study, we present the use of whole-metagenome shotgun sequencing to analyze the composition and functional structures of the gut microbiota in captive Amur tigers. Our results showed a high abundance of four major phyla in captive Amur tigers, including Proteobacteria, Firmicutes, Actinobacteria and Fusobacteria. Moreover, at the genus level, Escherichia, Collinsella and Fusobacterium were most abundant in the captive Amur tiger fecal metagenome. At the species level, Escherichia coli, Fusobacterium ulcerans and Fusobacterium varium were the species with highest abundances in the captive Amur tiger gut microbiota. The primary functional categories of the Amur tiger faecal metagenome were associated mainly with Carbohydrate metabolism, Membrane transport and Amino acid metabolism based on the KEGG pathway database. The comparative metagenomic analyses showed that the captive Amur tiger fecal metagenome had a lower abundance of Spirochaetes, Cyanobacteria and Ascomycota than other animals, and the primary functional categories were primarily associated with carbohydrate metabolism subsystems, clustering-based subsystems and protein metabolism.ConclusionsWe presented here for the first time the use of the shotgun metagenomic sequencing approach to study the composition and functional structures of the gut microbiota in captive Amur tiger.Electronic supplementary materialThe online version of this article (10.1186/s12917-018-1696-5) contains supplementary material, which is available to authorized users.
Background
Gut microbes significantly contribute to nutrient digestion and absorption, intestinal health and immunity, and are essential for the survival and environmental adaptation of wild animals. However, there are few studies on the gut microbiota of captive and wild North China leopard (Panthera pardus japonensis).
Results
A total of 10 mainly bacterial phyla were identified in the fecal microbiota of North China leopard, Lachnoclostridium (p = 0.003), Peptoclostridium (p = 0.005), Bacteroides (p = 0.008), Fusobacterium (p = 0.017) and Collinsella (p = 0.019) were significantly higher than those of wild North China leopard. Distinct differences in the fecal metabolic phenotypes of captive and wild North China leopard were found, such as content of l-methionine, n-acetyl-l-tyrosine, pentadecanoic acid and oleic acid. Differentially abundant gut microbes were associated with fecal metabolites, especially the bacteria in Firmicutes and Bacteroidetes, involved in the metabolism of N-acetyl-L-alanine and D-quinovose.
Conclusion
This study reports for the first time the differences in gut microbiota abundance between captive and wild North China leopard, as well as significant differences in fecal metabolic phenotypes between two groups.
Endometritis is a reproductive disorder characterized by an inflammatory response in the endometrium, which causes significant economic losses to the dairy farming industry. MicroRNAs (miRNAs) are implicated in the inflammatory response and immune regulation following infection by pathogenic bacteria. Recent miRNA microarray analysis showed an altered expression of miR-92b in cows with endometritis. In the present study, we set out to investigate the regulatory mechanism of miR-92b in endometritis. Here, qPCR results first validated that miR-92b was down-regulated during endometritis. And then, bovine endometrial epithelial cells (BEND cells) stimulated by high concentration of lipopolysaccharide (LPS) were employed as an
in vitro
inflammatory injury model. Our data showed that overexpression of miR-92b significantly suppressed the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF‐κB) in LPS-stimulated BEND cells, thereby reducing pro-inflammatory cytokines release and inhibiting cell apoptosis. Looking into the molecular mechanisms of regulation of inflammatory injury by miR-92b, we observed that overexpression of miR-92b restrained TLR4/NF‐κB by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/β-catenin pathway. Furthermore, the luciferase reporter assay suggested that miR-92b targeted inhibition of phosphatase and tensin homolog (PTEN), an inhibitor of the PI3K/AKT/β-catenin pathway. Importantly,
in vivo
experiments confirmed that up-regulation of miR-92b attenuated the pathological injury in an experimental murine model of LPS-induced endometritis. Collectively, these findings show that enforced expression of miR-92b alleviates LPS-induced inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN, suggesting a potential application for miR-92b-based therapy to treat endometritis or other inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.