This paper reports a VLSI realization of learning vector quantization (LVQ) with high flexibility for different applications. It is based on a hardware/ software (HW/SW) co-design concept for on-chip learning and recognition and designed as a SoC in 180 nm CMOS. The time consuming nearest Euclidean distance search in the LVQ algorithm's competition layer is efficiently implemented as a pipeline with parallel p-word input. Since neuron number in the competition layer, weight values, input and output number are scalable, the requirements of many different applications can be satisfied without hardware changes. Classification of a d-dimensional input vector is completed in n  dd=pe þ R clock cycles, where R is the pipeline depth, and n is the number of reference feature vectors (FVs). Adjustment of stored reference FVs during learning is done by the embedded 32-bit RISC CPU, because this operation is not time critical. The high flexibility is verified by the application of human detection with different numbers for the dimensionality of the FVs.
Abstract:The Hough Transform (HT) is a method for extracting straight lines from an edge image. The main limitations of the HT for usage in actual applications are computation time and storage requirements. This paper reports a hardware architecture for HT implementation on a Field Programmable Gate Array (FPGA) with parallelized voting procedure. The 2-dimensional accumulator array, namely the Hough space in parametric form (ρ, θ), for computing the strength of each line by a voting mechanism is mapped on a 1-dimensional array with regular increments of θ. Then, this Hough space is divided into a number of parallel parts. The computation of (ρ, θ) for the edge pixels and the voting procedure for straight-line determination are therefore executable in parallel. In addition, a synchronized initialization for the Hough space further increases the speed of straight-line detection, so that XGA video processing becomes possible. The designed prototype system has been synthesized on a DE4 platform with a Stratix-IV FPGA device. In the application of road-lane detection, the average processing speed of this HT implementation is 5.4 ms per XGA-frame at 200 MHz working frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.