Understanding the transmission dynamics of COVID-19 is crucial for evaluating its spread pattern, especially in metropolitan areas of China, as its spread could lead to secondary outbreaks. In addition, the experiences gained and lessons learned from China have the potential to provide evidence to support other metropolitan areas and large cities outside China with their emerging cases. We used data reported from January 24, 2020, to February 23, 2020, to fit a model of infection, estimate the likely number of infections in four high-risk metropolitan areas based on the number of cases reported, and increase the understanding of the COVID-19 spread pattern. Considering the effect of the official quarantine regulations and travel restrictions for China, which began January 23∼24, 2020, we used the daily travel intensity index from the Baidu Maps app to roughly simulate the level of restrictions and estimate the proportion of the quarantined population. A group of SEIR model statistical parameters were estimated using Markov chain Monte Carlo (MCMC) methods and fitting on the basis of reported data. As a result, we estimated that the basic reproductive number, R 0 , was 2.91 in Beijing, 2.78 in Shanghai, 2.02 in Guangzhou, and 1.75 in Shenzhen based on the data from January 24, 2020, to February 23, 2020. In addition, we inferred the prediction results and compared the results of different levels of parameters. For example, in Beijing, the predicted peak number of cases was 467 with a peak time of March 01, 2020; however, if the city were to implement different levels (strict, moderate, or weak) of travel restrictions or regulation measures, the estimation results showed that the transmission dynamics would change and that the peak number of cases would differ by between 54% and 209%. We concluded that public health interventions would reduce the risk of the spread of COVID-19 and that more rigorous control and prevention measures would Su et al. Epidemic Prediction of the COVID-19 effectively contain its further spread, and awareness of prevention should be enhanced when businesses and social activities return to normal before the end of the epidemic. Further, the experiences gained and lessons learned from China offer the potential to provide evidence supporting other metropolitan areas and big cities with their emerging cases outside China.
Background: Early prediction of the clinical outcome of patients with sepsis is of great significance and can guide treatment and reduce the mortality of patients. However, it is clinically difficult for clinicians.Methods: A total of 2,224 patients with sepsis were involved over a 3-year period (2016–2018) in the intensive care unit (ICU) of Peking Union Medical College Hospital. With all the key medical data from the first 6 h in the ICU, three machine learning models, logistic regression, random forest, and XGBoost, were used to predict mortality, severity (sepsis/septic shock), and length of ICU stay (LOS) (>6 days, ≤ 6 days). Missing data imputation and oversampling were completed on the dataset before introduction into the models.Results: Compared to the mortality and LOS predictions, the severity prediction achieved the best classification results, based on the area under the operating receiver characteristics (AUC), with the random forest classifier (sensitivity = 0.65, specificity = 0.73, F1 score = 0.72, AUC = 0.79). The random forest model also showed the best overall performance (mortality prediction: sensitivity = 0.50, specificity = 0.84, F1 score = 0.66, AUC = 0.74; LOS prediction: sensitivity = 0.79, specificity = 0.66, F1 score = 0.69, AUC = 0.76) among the three models. The predictive ability of the SOFA score itself was inferior to that of the above three models.Conclusions: Using the random forest classifier in the first 6 h of ICU admission can provide a comprehensive early warning of sepsis, which will contribute to the formulation and management of clinical decisions and the allocation and management of resources.
Background Modern clinical care in intensive care units is full of rich data, and machine learning has great potential to support clinical decision-making. The development of intelligent machine learning–based clinical decision support systems is facing great opportunities and challenges. Clinical decision support systems may directly help clinicians accurately diagnose, predict outcomes, identify risk events, or decide treatments at the point of care. Objective We aimed to review the research and application of machine learning–enabled clinical decision support studies in intensive care units to help clinicians, researchers, developers, and policy makers better understand the advantages and limitations of machine learning–supported diagnosis, outcome prediction, risk event identification, and intensive care unit point-of-care recommendations. Methods We searched papers published in the PubMed database between January 1980 and October 2020. We defined selection criteria to identify papers that focused on machine learning–enabled clinical decision support studies in intensive care units and reviewed the following aspects: research topics, study cohorts, machine learning models, analysis variables, and evaluation metrics. Results A total of 643 papers were collected, and using our selection criteria, 97 studies were found. Studies were categorized into 4 topics—monitoring, detection, and diagnosis (13/97, 13.4%), early identification of clinical events (32/97, 33.0%), outcome prediction and prognosis assessment (46/97, 47.6%), and treatment decision (6/97, 6.2%). Of the 97 papers, 82 (84.5%) studies used data from adult patients, 9 (9.3%) studies used data from pediatric patients, and 6 (6.2%) studies used data from neonates. We found that 65 (67.0%) studies used data from a single center, and 32 (33.0%) studies used a multicenter data set; 88 (90.7%) studies used supervised learning, 3 (3.1%) studies used unsupervised learning, and 6 (6.2%) studies used reinforcement learning. Clinical variable categories, starting with the most frequently used, were demographic (n=74), laboratory values (n=59), vital signs (n=55), scores (n=48), ventilation parameters (n=43), comorbidities (n=27), medications (n=18), outcome (n=14), fluid balance (n=13), nonmedicine therapy (n=10), symptoms (n=7), and medical history (n=4). The most frequently adopted evaluation metrics for clinical data modeling studies included area under the receiver operating characteristic curve (n=61), sensitivity (n=51), specificity (n=41), accuracy (n=29), and positive predictive value (n=23). Conclusions Early identification of clinical and outcome prediction and prognosis assessment contributed to approximately 80% of studies included in this review. Using new algorithms to solve intensive care unit clinical problems by developing reinforcement learning, active learning, and time-series analysis methods for clinical decision support will be greater development prospects in the future.
Background Analgesia and sedation therapy are commonly used for critically ill patients, especially mechanically ventilated patients. From the initial nonsedation programs to deep sedation and then to on-demand sedation, the understanding of sedation therapy continues to deepen. However, according to different patient’s condition, understanding the individual patient’s depth of sedation needs remains unclear. Methods The public open source critical illness database Medical Information Mart for Intensive Care III was used in this study. Latent profile analysis was used as a clustering method to classify mechanically ventilated patients based on 36 variables. Principal component analysis dimensionality reduction was used to select the most influential variables. The ROC curve was used to evaluate the classification accuracy of the model. Results Based on 36 characteristic variables, we divided patients undergoing mechanical ventilation and sedation and analgesia into two categories with different mortality rates, then further reduced the dimensionality of the data and obtained the 9 variables that had the greatest impact on classification, most of which were ventilator parameters. According to the Richmond-ASS scores, the two phenotypes of patients had different degrees of sedation and analgesia, and the corresponding ventilator parameters were also significantly different. We divided the validation cohort into three different levels of sedation, revealing that patients with high ventilator conditions needed a deeper level of sedation, while patients with low ventilator conditions required reduction in the depth of sedation as soon as possible to promote recovery and avoid reinjury. Conclusion Through latent profile analysis and dimensionality reduction, we divided patients treated with mechanical ventilation and sedation and analgesia into two categories with different mortalities and obtained 9 variables that had the greatest impact on classification, which revealed that the depth of sedation was limited by the condition of the respiratory system.
Pulse signal is the non-stationary random signal, the signal denoising is an important task before analyzing it. Based on wavelet thresholding denoising method presented by Donoho, a new compromising threshold function is proposed. Compared with classical thresholding denoising methods, it overcomes the discontinuity of the hard-thresholding method and reduces the fixed deviation between the estimated wavelet coefficients and the decomposed wavelet coefficients of the softthresholding method. The experiment results show that the improved method gives better Signal to Noise Ratio (SNR) and Mean Square Error (MSE) than the soft-thresholding method, hard-thresholding method and the standard compromising method between them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.