BackgroundSNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes.ResultsWe construct an ultra-dense inter-specific genetic map comprising 4,999,048 SNP loci distributed unevenly in 26 allotetraploid cotton linkage groups and covering 4,042 cM. The map is used to order tetraploid cotton genome scaffolds for accurate assembly of G. hirsutum acc. TM-1. Recombination rates and hotspots are identified across the cotton genome by comparing the assembled draft sequence and the genetic map. Using this map, genome rearrangements and centromeric regions are identified in tetraploid cotton by combining information from the publicly-available G. raimondii genome with fluorescent in situ hybridization analysis.ConclusionsWe report the genotype-by-sequencing method used to identify millions of SNPs between G. hirsutum and G. barbadense. We construct and use an ultra-dense SNP map to correct sequence mis-assemblies, merge scaffolds into pseudomolecules corresponding to chromosomes, detect genome rearrangements, and identify centromeric regions in allotetraploid cottons. We find that the centromeric retro-element sequence of tetraploid cotton derived from the D subgenome progenitor might have invaded the A subgenome centromeres after allotetrapolyploid formation. This study serves as a valuable genomic resource for genetic research and breeding of cotton.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0678-1) contains supplementary material, which is available to authorized users.
Cotton fiber elongation, largely achieved by cell wall loosening, is an important stage during cotton fiber development. In this present research, a fiber preferential cDNA encoding a pectate lyase (PEL) which could exclusively degrade the de-esterified pectin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. Subsequently, the corresponding PEL genes were isolated from four different cotton species and characterized. In vitro enzyme assays indicated that GhPEL really exhibited cleavage-activity against de-esterified pectin. The temporal-spatial expression analyses revealed that the GhPEL gene was preferentially expressed in fibers at 10 days-post anthesis (DPA). Antisense GhPEL transgenic cotton plants were generated by Agrobacterium-mediated transformation. Six homozygous lines, each with one or two copies of the transgene inserted as determined by southern blot analysis of the NPTII gene, were selected for further functional analysis. The GhPEL expression during fiber elongation in these transgenic lines was significantly suppressed in various degrees. Furthermore, the reduction of GhPEL enzymatic activity by decreasing GhPEL transcripts severely affected the degradation of de-esterified pectin in primary cell walls of transgenic cotton fibers, which consequently blocked cell wall loosening in early fiber development. Ultimately, the fiber elongation of all these transgenic lines was repressed. These results suggested that GhPEL may play an important role in the process of normal fiber elongation in cotton.
Mutants are a powerful resource for studying gene structure, function, and evolution. In this present study, a novel Ligon lintless-like mutant (Lix), that has short fibers and deformed leaves and stems, was isolated from the progeny of transgenic cottons. The Lix mutant is similar in morphology to the Ligon lintless (Li1) mutant. Genetic analysis and molecular mapping were performed for the Lix and Li1 mutants. These two mutants are monogenic dominant mutants with distorted growth of vegetative and reproductive structures. Seedlings of the dominant homozygote Li 1 Li 1 genotype are lethal, while LixLix plants are viable but show no reproductive growth. Molecular tagging showed that the Lix gene is located on Chr. 04 in a 30.9-cM region spanned by NAU8376 and NAU3469. In a previous study, the Li 1 gene was mapped to Chr. 22, and Chr. 04 and Chr. 22 are homoelogous chromosomes in tetraploid cotton. So, we propose that Lix and Li1 mutants have similar mutated morphology, and Lix is mapped to a homoelogous chromosome carrying Li 1 . The identification and genetic mapping of Lix/Li 1 genes using mutants provides a foundation for isolating these genes. In turn, this will permit studies to elucidate the functional and evolutionary roles for these genes in cotton growth and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.