Although probabilistic programming is widely used for some restricted classes of statistical models, existing systems lack the flexibility and efficiency needed for practical use with more challenging models arising in fields like computer vision and robotics. This paper introduces Gen, a generalpurpose probabilistic programming system that achieves modeling flexibility and inference efficiency via several novel language constructs: (i) the generative function interface for encapsulating probabilistic models; (ii) interoperable modeling languages that strike different flexibility/efficiency tradeoffs; (iii) combinators that exploit common patterns of conditional independence; and (iv) an inference library that empowers users to implement efficient inference algorithms at a high level of abstraction. We show that Gen outperforms state-of-the-art probabilistic programming systems, sometimes by multiple orders of magnitude, on diverse problems including object tracking, estimating 3D body pose from a depth image, and inferring the structure of a time series. CCS Concepts • Mathematics of computing → Probabilistic reasoning algorithms.
The computational principles underlying predictive capabilities in animals are poorly understood. Here, we wondered whether predictive models mediating prey capture could be reduced to a simple set of sensorimotor rules performed by a primitive organism. For this task, we chose the larval zebrafish, a tractable vertebrate that pursues and captures swimming microbes. Using a novel naturalistic 3D setup, we show that the zebrafish combines position and velocity perception to construct a future positional estimate of its prey, indicating an ability to project trajectories forward in time. Importantly, the stochasticity in the fish’s sensorimotor transformations provides a considerable advantage over equivalent noise-free strategies. This surprising result coalesces with recent findings that illustrate the benefits of biological stochasticity to adaptive behavior. In sum, our study reveals that zebrafish are equipped with a recursive prey capture algorithm, built up from simple stochastic rules, that embodies an implicit predictive model of the world.
We present new techniques for automatically constructing probabilistic programs for data analysis, interpretation, and prediction. These techniques work with probabilistic domain-specific data modeling languages that capture key properties of a broad class of data generating processes, using Bayesian inference to synthesize probabilistic programs in these modeling languages given observed data. We provide a precise formulation of Bayesian synthesis for automatic data modeling that identifies sufficient conditions for the resulting synthesis procedure to be sound. We also derive a general class of synthesis algorithms for domain-specific languages specified by probabilistic context-free grammars and establish the soundness of our approach for these languages. We apply the techniques to automatically synthesize probabilistic programs for time series data and multivariate tabular data. We show how to analyze the structure of the synthesized programs to compute, for key qualitative properties of interest, the probability that the underlying data generating process exhibits each of these properties. Second, we translate probabilistic programs in the domain-specific language into probabilistic programs in Venture, a general-purpose probabilistic programming system. The translated Venture programs are then executed to obtain predictions of new time series data and new multivariate data records. Experimental results show that our techniques can accurately infer qualitative structure in multiple real-world data sets and outperform standard data analysis methods in forecasting and predicting new data.
Many predatory animals rely on accurate sensory perception, predictive models, and precise pursuits to catch moving prey. Larval zebrafish intercept paramecia during their hunting behavior, but the precise trajectories of their prey have never been recorded in relation to fish movements in three dimensions.As a means of uncovering what a simple organism understands about its physical world, we have constructed a 3D-imaging setup to simultaneously record the behavior of larval zebrafish, as well as their moving prey, during hunting. We show that zebrafish robustly transform their 3D displacement and rotation according to the position of their prey while modulating both of these variables depending on prey velocity. This is true for both azimuth and altitude, but particulars of the hunting algorithm in the two planes are slightly different to accommodate an asymmetric strike zone. We show that the combination of position and velocity perception provides the fish with a preferred future positional estimate, indicating an ability to project trajectories forward in time. Using computational models, we show that this projection ability is critical for prey capture efficiency and success. Further, we demonstrate that fish use a graded stochasticity algorithm where the variance around the mean result of each swim scales with distance from the target. Notably, this strategy provides the animal with a considerable improvement over equivalent noise-free strategies.In sum, our quantitative and probabilistic modeling shows that zebrafish are equipped with a stochastic recursive algorithm that embodies an implicit predictive model of the world. This algorithm, built by a simple set of behavioral rules, allows the fish to optimize their hunting strategy in a naturalistic three-dimensional environment. INTRODUCTION:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.