Abstract-We present a novel vision-based grasp point detection algorithm that can reliably detect the corners of a piece of cloth, using only geometric cues that are robust to variation in texture. Furthermore, we demonstrate the effectiveness of our algorithm in the context of folding a towel using a generalpurpose two-armed mobile robotic platform without the use of specialized end-effectors or tools. The robot begins by picking up a randomly dropped towel from a table, goes through a sequence of vision-based re-grasps and manipulationspartially in the air, partially on the table-and finally stacks the folded towel in a target location. The reliability and robustness of our algorithm enables for the first time a robot with general purpose manipulators to reliably and fully-autonomously fold previously unseen towels, demonstrating success on all 50 out of 50 single-towel trials as well as on a pile of 5 towels.
Fig. 1: The PR2 with a pair of pants in a crumpled initial configuration.Abstract-We consider the problem of autonomously bringing an article of clothing into a desired configuration using a general-purpose two-armed robot. We propose a hidden Markov model (HMM) for estimating the identity of the article and tracking the article's configuration throughout a specific sequence of manipulations and observations. At the end of this sequence, the article's configuration is known, though not necessarily desired. The estimated identity and configuration of the article are then used to plan a second sequence of manipulations that brings the article into the desired configuration. We propose a relaxation of a strainlimiting finite element model for cloth simulation that can be solved via convex optimization; this serves as the basis of the transition and observation models of the HMM. The observation model uses simple perceptual cues consisting of the height of the article when held by a single gripper and the silhouette of the article when held by two grippers. The model accurately estimates the identity and configuration of clothing articles, enabling our procedure to autonomously bring a variety of articles into desired configurations that are useful for other tasks, such as folding.
Although probabilistic programming is widely used for some restricted classes of statistical models, existing systems lack the flexibility and efficiency needed for practical use with more challenging models arising in fields like computer vision and robotics. This paper introduces Gen, a generalpurpose probabilistic programming system that achieves modeling flexibility and inference efficiency via several novel language constructs: (i) the generative function interface for encapsulating probabilistic models; (ii) interoperable modeling languages that strike different flexibility/efficiency tradeoffs; (iii) combinators that exploit common patterns of conditional independence; and (iv) an inference library that empowers users to implement efficient inference algorithms at a high level of abstraction. We show that Gen outperforms state-of-the-art probabilistic programming systems, sometimes by multiple orders of magnitude, on diverse problems including object tracking, estimating 3D body pose from a depth image, and inferring the structure of a time series. CCS Concepts • Mathematics of computing → Probabilistic reasoning algorithms.
Modern probabilistic programming languages aim to formalize and automate key aspects of probabilistic modeling and inference. Many languages provide constructs for programmable inference that enable developers to improve inference speed and accuracy by tailoring an algorithm for use with a particular model or dataset. Unfortunately, it is easy to use these constructs to write unsound programs that appear to run correctly but produce incorrect results. To address this problem, we present a denotational semantics for programmable inference in higher-order probabilistic programming languages, along with a type system that ensures that well-typed inference programs are sound by construction. A central insight is that the type of a probabilistic expression can track the space of its possible execution traces, not just the type of value that it returns, as these traces are often the objects that inference algorithms manipulate. We use our semantics and type system to establish soundness properties of custom inference programs that use constructs for variational, sequential Monte Carlo, importance sampling, and Markov chain Monte Carlo inference. CCS Concepts: • Mathematics of computing → Probabilistic inference problems; Variational methods; Metropolis-Hastings algorithm; Sequential Monte Carlo methods; • Theory of computation → Semantics and reasoning; Denotational semantics; • Software and its engineering → Formal language definitions.
Inpatient social networks represent a novel secondary use of EMR data, and can be used to simulate nosocomial infections. Future work should focus on prospective validation of the simulations, and adapting such networks to other tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.