Here we report on a pilot study of the Living Root Bridges (LRBs) in the Indian State Meghalaya, which are grown with aerial roots of Ficus elastica , a facultative hemiepiphyte developing abundant aerial roots. Locals use these aerial roots to build living bridges, which strengthen themselves over time due to adaptive secondary growth and their capacity to form a mechanically stable structure via inosculations. An extensive inventory of LRBs in Meghalaya including data of location, altitude, approximate age and bridge length was performed in field studies. Root morphology was characterised by measurements of cross-sectional area and shape-related parameters and analysed in relation to the orientation of the roots. LRBs are found to occur mainly in the mountainous limestone rainforests where F. elastica may be native or traditionally cultivated. They cover an altitude range of 57–1211 m a.m.s.l. and display a length of 2 to 52.7 m. Some bridges are several hundreds of years old. Horizontally and vertically trained roots differ significantly in shape and cross-sectional area when approximately even-aged roots are compared. The results are discussed from an interdisciplinary perspective, considering the adaptive traits in the natural life cycle of F. elastica and possible applications in living architecture (Baubotanik).
Baubotanik – the construction method that uses living plants for load bearing in architectural structures – provides a surprising ability to anticipate the latent convergence of non‐living and living systems in architecture. Through interdisciplinary research by architects, engineers and biologists it aims to synthesise architectural qualities, constructive requirements and biological properties in living structures. In this article, Ferdinand Ludwig, Hannes Schwertfeger and Oliver Storz of the Baubotanik research group at the Institute for Architectural Theory and Design (IGMA) at the University of Stuttgart explain how living and non‐living building elements can be designed to develop into vegetal‐technical compound structures. Copyright © 2012 John Wiley & Sons, Ltd.
No abstract
Living root bridges (LRBs) are functional load-bearing structures grown from Ficus elastica by rural Khasi and Jaintia communities in Meghalaya (India). Formed without contemporary engineering design tools, they are a unique example of vernacular living architecture. The main objective of this study is to investigate to what extent LRBs can be seen as an example of regenerative design. The term "regenerative" describes processes that renew the resources necessary for their function. Whole systems thinking underpins regenerative design, in which the integration of human and non-human systems improves resilience. We adapted the living environments in natural, social, and economic systems (LENSES) framework (living environments in natural, social, and economic systems) to reflect the holistic, integrated systems present in LRBs. The regenerative / sustainable / degenerative scale provided by LENSES Rubrics is applied to 27 focal points in nine flow groups. Twenty-two of these points come from LENSES directly, while five were created by the authors, as advised by the LENSES framework. Our results show 10 focal points in which LRBs are unambiguously regenerative. One focal point is unambiguously sustainable, while 16 are ambiguous, showing regenerative, sustainable, and degenerative aspects. User perspective determines how some focal points are evaluated. The contrast between a local, indigenous perspective and a global, tourism-focused perspective is demonstrated by the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.