This paper presents a new method for 3D action recognition with skeleton
sequences (i.e., 3D trajectories of human skeleton joints). The proposed method
first transforms each skeleton sequence into three clips each consisting of
several frames for spatial temporal feature learning using deep neural
networks. Each clip is generated from one channel of the cylindrical
coordinates of the skeleton sequence. Each frame of the generated clips
represents the temporal information of the entire skeleton sequence, and
incorporates one particular spatial relationship between the joints. The entire
clips include multiple frames with different spatial relationships, which
provide useful spatial structural information of the human skeleton. We propose
to use deep convolutional neural networks to learn long-term temporal
information of the skeleton sequence from the frames of the generated clips,
and then use a Multi-Task Learning Network (MTLN) to jointly process all frames
of the generated clips in parallel to incorporate spatial structural
information for action recognition. Experimental results clearly show the
effectiveness of the proposed new representation and feature learning method
for 3D action recognition.Comment: CVPR 201
Recognizing 3D objects in the presence of noise, varying mesh resolution, occlusion and clutter is a very challenging task. This paper presents a novel method named Rotational Projection Statistics (RoPS). It has three major modules: Local Reference Frame (LRF) definition, RoPS feature description and 3D object recognition. We propose a novel technique to define the LRF by calculating the scatter matrix of all points lying on the local surface. RoPS feature descriptors are obtained by rotationally projecting the neighboring points of a feature point onto 2D planes and calculating a set of statistics (including low-order central moments and entropy) of the distribution of these projected points. Using the proposed LRF and RoPS descriptor, we present a hierarchical 3D object recognition algorithm. The performance of the proposed LRF, RoPS descriptor and object recognition algorithm was rigorously tested on a number of popular and publicly available datasets. Our proposed techniques exhibited superior performance compared to existing techniques. We also showed that our method is robust with re-
Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.
3D object recognition in cluttered scenes is a rapidly growing research area. Based on the used types of features, 3D object recognition methods can broadly be divided into two categories-global or local feature based methods. Intensive research has been done on local surface feature based methods as they are more robust to occlusion and clutter which are frequently present in a real-world scene. This paper presents a comprehensive survey of existing local surface feature based 3D object recognition methods. These methods generally comprise three phases: 3D keypoint detection, local surface feature description, and surface matching. This paper covers an extensive literature survey of each phase of the process. It also enlists a number of popular and contemporary databases together with their relevant attributes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.