In this paper, we present a cognitive radio (CR)-based statistical framework for a two-tier heterogeneous cellular network (femto-macro network) to model the outage probability at any arbitrary secondary (femto) and primary (macro) user. A system model based on stochastic geometry (utilizing the spatial Poisson point process (PPP) theory) is applied to model the random locations and network topology of both secondary and primary users. A considerable performance improvement can be generally achieved by mitigating interference in result of applying the CR idea over the above model. Novel closed-form expressions are derived for the downlink outage probability of any typical femto and macro user considering the Rayleigh fading for the desired and interfering links. We also study some important design factors which their role and importance in the determination of outage and interference cannot be ignored. We conduct simulations to validate our analytical results and evaluate the proposed schemes in terms of outage probability for different values of signal-to-interference-plus-noise ratio (SINR) target.
Small cells (SCs) offer a promising approach to meeting the exponentially growing data rate demands. However, dense deployment of SCs can degrade the energy-efficiency (EE) of the network due to the additional deployed base stations (BSs). Under heterogeneous network (HetNet) deployments, SCs can be dynamically switched off for energy saving when traffic load decreases. We do this by defining a load-dependent transmission power coefficient (TPC) for SC BSs. In addition, with Device-to-Device (D2D) communication, mobile users in proximity can establish a direct link and bypass the BSs, thereby offloading the network infrastructure and providing further improvement of EE. In this paper, the objective is to rely on both D2D communications and sleeping SC BSs to offload traffic from the mains powered macrocell BSs leading to energy saving in the network. Furthermore, in order to consider D2D requirements under the practical application scenarios, we assume a framework for wireless video sharing, where users can store popular video files and share files via D2D communication. To begin with, we derive the EE expression of the cache-enabled D2D-aided HetNet. Then, to maximize the EE of the cache-enabled D2D-aided HetNet, the optimal load-dependent TPC for SC BSs is obtained under constraints on both network's coverage and rate. Using simulations, we will investigate the potential effects of the TPC defined for SC BSs as well as the introduced D2D layer on the network EE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.