In order to produce doubled-haploid maize plants tolerant of oxidative stress, in vitro microspore selection was carried out in anther culture with reactive oxygen species (ROS) progenitors such as paraquat, menadione, tert-butylhydroperoxide (t-BHP), and methionine combined with riboflavin. All the ROS progenitors reduced the anther induction, the formation of microspore-derived structures, and their regeneration potential. Abnormal cell divisions and progeny cell degradation could be observed during the development of microspores treated with ROS progenitors. Menadione and t-BHP influenced the microspore developmental pathway, as menadione induced the formation of embryoids, while t-BHP increased the proportion of calli in the microspore-derived structures. As the result of in vitro selection, 15, 10, 10, and 3 fertile doubled-haploid plants were obtained in cultures treated with paraquat, t-BHP, methionine combined with riboflavin, and menadione, respectively.
Microspores genetically programmed to produce male gametes can be switched to the embryogenic pathway to give rise to haploid embryos. Microspore embryogenesis is usually induced in barley by stress pre-treatment applied to vacuolated microspores. We studied the expression of two genes during the early stages of microspore embryogenesis to gain further insight into the microspore transition from the gametophytic to the embryogenic pathway. RT-PCR together with in situ hybridization on sections (ISH) and whole-mount in situ hybridization (WISH) were used to analyse the expression of the early-culture abundant gene (ECA1), which is expressed in barley during microspore embryogenesis, and a polygalacturonase gene (HvPG1), a late pollen gene expressed during gametogenesis only after microspore division. Both ECA1 and HvPG1 genes were transcriptionally active after stress pre-treatment in the same populations of microspore-derived structures, representing the sporophytically induced ones. ECA1 transcripts were also detected after 3 days' culture. Our results point to the possibility of using ECA1 gene expression as a marker for the induction of microspore embryogenesis and the earliest stages of this process. Finally, we demonstrate that WISH is a suitable technique for studying gene expression in embryogenic microspore populations and, because different structures can be examined individually, is an appropriate complement to transcriptomic profile analyses in the study of early microspore embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.