The objective of the present study was to determine the effects of rumen-protected choline (RPC) supplementation on body condition, milk production and milk choline content during the periparturient period. Thirty-two Holstein cows were allocated into two groups (RPC group -with RPC supplementation, and control group -without RPC supplementation) 28 days before the expected calving. Cows were fed the experimental diet from 21 days before expected calving until 60 days of lactation. The daily diet of the RPC group contained 100 g of RPC from 21 days before calving until calving and 200 g RPC after calving for 60 days of lactation, which provided 25 g and 50 g per day choline, respectively. Body condition was scored on days 221, 7, 35 and 60 relative to calving. Milk production was measured at every milking; milk fat, protein and choline content were determined on days 7, 35 and 60 of lactation. Body condition was not affected by RPC supplementation. Milk yield was 4.4 kg higher for the group of cows receiving supplementary choline during the 60 days experimental period and 4% fat-corrected milk production was also increased by 2.5 kg/day. Milk fat content was not altered by treatment, but fat yield was increased by 0.10 kg/day as a consequence of higher milk yield in the RPC-treated group. Milk protein content tended to increase by RPC supplementation and a 0.18 kg/day significant improvement of protein yield was detected. Milk choline content increased in both groups after calving as the lactating period advanced. However, milk choline content and choline yield were significantly higher in the RPC group than in the control group. The improved milk choline and choline yield provide evidence that some of the applied RPC escaped ruminal degradation, was absorbed from the small intestine and improved the choline supply of the cows and contributed to the changes of production variables.
Our study proves that diet composition can modify Camp. jejuni colonization depending on sampling time point postinfection.
We evaluated the lactation performance, liver lipid content and plasma metabolites indicating the energy balance of dairy cows supplemented with conjugated linoleic acid (CLA) pre- and post-partum (PP) vs. only PP. A total of 60 cows were divided into three groups (n = 20). Daily diet of cows was supplemented with 14 g of CLA (7 g cis-9, trans-11 and 7 g trans-10, cis-12 isomers) from week 3 before the expected date of calving (group CLA1), or from the day of calving (group CLA2) until 77-91 days PP. Control cows were fed an isocaloric, isonitrogenous and isolipidic diet without CLA. Between week 3 and week 6 PP, the milk yield of cows in both CLA-treated groups was approximately 4.5 kg higher (p < 0.05) than in control. Milk fat concentrations decreased from week 3 and were lower in both CLA groups than in control (p < 0.01). Body condition score loss was lower (p < 0.05) in the CLA1 than in the control group on week 5 PP. By week 11 PP, the body condition of both CLA1 and CLA2 groups exceeded that of control. Plasma non-esterified fatty acid was lower in CLA1 compared to CLA2 and control during the early PP period (p < 0.05), while this difference faded away by the late PP period. Beta-hydroxybutyrate (BHBA) increased rapidly in all groups following calving. In CLA1 group, it began to decrease sooner than in CLA2 and control. The prevalence of subclinical ketosis (BHBA > 1.2 mm) was lower in CLA1 group than in CLA2 and control (p < 0.05). Liver biopsy analyses showed that CLA1 treatment decreased (p < 0.05) the total lipid content of liver compared to control at week 5 after calving. Our results show that CLA supplementation is more efficient in alleviating body mass mobilization and decreasing the incidence of subclinical ketosis when applied as early as 3 weeks before calving than started feeding after calving.
Rumen-protected choline (RPC) was evaluated for effects on the lipid and glycogen content of the liver and metabolic variables in the blood plasma of dairy cows. Thirty-two Holstein cows were allocated into two groups (RPC group with RPC supplementation and control group without RPC supplementation) 28 days before the expected calving. Cows were fed the experimental diet from 21 days before calving until day 60 of lactation. The diet of the RPC group was supplemented with 100 g/day of RPC from 21 days prepartum until calving and 200 g/day of RPC for 60 days postpartum, providing 25 and 50 g of choline, respectively. Liver samples were taken by percutaneous needle biopsy, then analysed for total lipid (TLl), triglyceride (TGl) and glycogen (GLYl) contents on days -21, +7, +35 and +60 relative to calving. Blood was collected on the same sampling days and 21 days after calving. Glucose, non-esterified fatty acid (NEFA), β-hydroxybutyrate (BHBA), triglyceride (TGp), total cholesterol (TCh), urea, ammonia and aspartate aminotransferase (AST) were determined from blood samples. The TLl and TGl contents were 25.0 ± 4.3 g and 25.3 ± 3.8 g per kg wet weight (mean ± SEM), respectively, lower in the RPC group than in the control animals. No significant differences were observed in the GLYl concentrations between the two groups. However, a lower TGl: GLYl ratio was shown in the liver of cows fed the RPC diet as compared to the controls. RPC supplementation decreased BHBA while increasing TGp concentrations were shown in the blood of cows fed the RPC diet, possibly as a consequence of improved lipoprotein synthesis in, and triglyceride excretion from, the liver, together with a reduced rate of ketogenesis.
Heat stress is one of the most important issues in broiler flocks impairing animal health and productivity. On a cellular level, excess heat exposure can trigger heat shock response acting for the restoration of cell homeostasis by several mechanisms, such as affecting heat shock protein synthesis, redox homeostasis and pro-inflammatory cytokine production. The major aim of this study was to establish a novel avian hepatocyte—nonparenchymal cell co-culture as a model for investigating the cellular effects of heat stress and its interaction with inflammation in chicken liver. Cell fractions were isolated by differential centrifugation from a freshly perfused chicken liver, and hepatocyte mono-cultures as well as hepatocyte–nonparenchymal cell co-cultures (with cell ratio 6:1, hepatocytes to nonparenchymal cells, mimicking a milder hepatic inflammation) were prepared. Isolated and cultured cells were characterized by flow cytometry and immunocytochemistry applying hepatocyte- and macrophage-specific antibodies. Confluent cell cultures were exposed to 43 °C temperature for 1 or 2 h, while controls were cultured at 38.5 °C. The metabolic activity, LDH enzyme activity, reactive oxygen species (H2O2) production, extracellular concentration of heat shock protein 70 (HSP70), and that of the pro-inflammatory cytokines interleukin (IL-)6 and IL-8 were assessed. Shorter heat stress applied for 1 h could strongly influence liver cell function by significantly increasing catabolic metabolism and extracellular H2O2 release, and by significantly decreasing HSP70, IL-6, and IL-8 production on both cell culture models. However, all these alterations were restored after 2 h heat exposure, indicating a fast recovery of liver cells. Hepatocyte mono-cultures and hepatocyte—nonparenchymal cell co-cultures responded to heat stress in a similar manner, but the higher metabolic rate of co-cultured cells may have contributed to a better capability of inflamed liver cells for accommodation to stress conditions. In conclusion, the established new primary cell culture models provide suitable tools for studying the hepatic inflammatory and stress response. The results of this study highlight the impact of short-term heat stress on the liver in chickens, underline the mediatory role of oxidative stress in acute stress response, and suggest a fast cellular adaptation potential in liver cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.