The relative weights of physical forcing and biotic interaction as drivers of evolutionary change have been debated in evolutionary theory. The recent finding that species, genera, clades, and chronofaunas all appear to exhibit a symmetrical pattern of waxing and waning lends support to the view that biotic interactions shape the history of life. Yet, there is similarly abundant evidence that these primary units of biological evolution arise and wane in coincidence with major climatic change. We review these patterns and the process-level explanations offered for them. We also propose a tentative synthesis, characterized by interdependence between physical forcing and biotic interactions. We suggest that species with evolutionary novelties arise predominantly in “species factories” that develop under harsh environmental conditions, under dominant physical forcing, whereas exceptionally mild environments give rise to “oases in the desert,” characterized by strong competition and survival of relics.
Although ecometric methods have been used to analyse fossil mammal faunas and environments of Eurasia and North America, such methods have not yet been applied to the rich fossil mammal record of eastern Africa. Here we report results from analysis of a combined dataset spanning east and west Turkana from Kenya between 7 and 1 million years ago (Ma). We provide temporally and spatially resolved estimates of temperature and precipitation and discuss their relationship to patterns of faunal change, and propose a new hypothesis to explain the lack of a temperature trend. We suggest that the regionally arid Turkana Basin may between 4 and 2 Ma have acted as a ‘species factory’, generating ecological adaptations in advance of the global trend. We show a persistent difference between the eastern and western sides of the Turkana Basin and suggest that the wetlands of the shallow eastern side could have provided additional humidity to the terrestrial ecosystems. Pending further research, a transient episode of faunal change centred at the time of the KBS Member (1.87–1.53 Ma), may be equally plausibly attributed to climate change or to a top-down ecological cascade initiated by the entry of technologically sophisticated humans.This article is part of the themed issue ‘Major transitions in human evolution’.
Despite much interest in the ecology and origins of the extensive grassland ecosystems of the modern world, the biogeographic relationships of savannah palaeobiomes of Africa, India and mainland Eurasia have remained unclear. Here we assemble the most recent data from the Neogene mammal fossil record in order to map the biogeographic development of Old World mammalian faunas in relation to palaeoenvironmental conditions. Using genus-level faunal similarity and mean ordinated hypsodonty in combination with palaeoclimate modelling, we show that savannah faunas developed as a spatially and temporally connected entity that we term the Old World savannah palaeobiome. The Old World savannah palaeobiome flourished under the influence of middle and late Miocene global cooling and aridification, which resulted in the spread of open habitats across vast continental areas. This extensive biome fragmented into Eurasian and African branches due to increased aridification in North Africa and Arabia during the late Miocene. Its Eurasian branches had mostly disappeared by the end of the Miocene, but the African branch survived and eventually contributed to the development of Plio-Pleistocene African savannah faunas, including their early hominins. The modern African savannah fauna is thus a continuation of the extensive Old World savannah palaeobiome.
An adult maxilla and partial mandibles of a hominoid primate recovered from the late Miocene locality of Çorakyerler (central Anatolia) are recognized as a new species of Ouranopithecus, one of the rare western Eurasian hominoids to have survived well into the late Miocene. This species is distinguished from its sister taxon, and likely ancestor Ouranopithecus macedoniensis, by a constellation of dentognathic features. The new species, in which the male postcanine dentition is larger than that of any other Miocene ape besides Gigantopithecus, is associated with evidence indicating an open, dry environment. Dental features of Ouranopithecus apparently evolved in parallel with later Australopithecus, and suggest that Ouranopithecus was adapted to a diet of tough/abrasive foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.