Male differentiation of primordial germ cells (PGCs) is initiated by the inhibition of entry into meiosis and exposure to male-inducing factor(s), which are regulated by somatic elements of the developing gonad. Fibroblast growth factor 9 (FGF9) produced by pre-Sertoli cells is essential for male gonadal differentiation and also contributes to survival and male differentiation of XY PGCs. However, it is not clear how FGF9 regulates PGC fate. Using a PGC culture system, we identified dose-dependent, fate-determining functions of FGF9 in XY PGCs. Treatment with low levels of FGF9 (0.2 ng/ml) increased expression of male-specific Dnmt3L and Nanos2 in XY PGCs. Conversely, treatment with high levels of FGF9 (25 ng/ml) suppressed male-specific gene expression and stimulated proliferation of XY PGCs. Western blotting showed that low FGF9 treatment enhanced p38 MAPK (mitogen-activated protein kinase) phosphorylation in the same cells. In contrast, high FGF9 treatment significantly stimulated the ERK (extracellular signal-regulated kinase)1/2 signaling pathway in XY PGCs. We investigated the relationship between the ERK1/2 signaling pathway stimulated by high FGF9 and regulation of PGC proliferation. An ERK1/2 inhibitor (U0126) suppressed the PGC proliferation that would otherwise be stimulated by high FGF9 treatment, and increased Nanos2 expression in XY PGCs. Conversely, a p38 MAPK inhibitor (SB202190) significantly suppressed Nanos2 expression that would otherwise be stimulated by low FGF9 in XY PGCs. Taken together, our results suggest that stage-specific expression of FGF9 in XY gonads regulates the balance between proliferation and differentiation of XY PGCs in a dose-dependent manner.
Summary SentenceFGF9 directly regulates different fates of XY PGCs in a dose-dependent manner: low FGF9 treatment promotes p38 signaling pathway to induce PGC male differentiation, whereas high FGF9 treatment enhances ERK1/2 signaling pathway to proliferate PGCs.
122
Can & Rahmi Cetinkaya (2018) Comparative identification and evolutionary relationship of fatty acid desaturase (FAD) genes in some oil crops: the sunflower model for evaluation of gene expression pattern under drought stress, Biotechnology &
In murine fetal germ cells, retinoic acid (RA) is an extrinsic cue for meiotic initiation that stimulates transcriptional activation of the Stimulated by retinoic acid gene 8 (Stra8), which is required for entry of germ cells into meiotic prophase I. Canonically, the biological activities of RA are mediated by nuclear RA receptors. Recent studies in somatic cells found that RA noncanonically stimulates intracellular signal transduction pathways to regulate multiple cellular processes. In this study, using a germ cell culture system, we investigated (1) whether RA treatment activates any mitogen-activated protein kinase (MAPK) pathways in fetal germ cells at the time of sex differentiation, and (2) if this is the case, whether the corresponding RA-stimulated signaling pathway regulates Stra8 expression in fetal germ cells and their entry into meiosis. When XX germ cells at embryonic day (E) 12.5 were cultured with RA, the extracellular-signal-regulated kinase (ERK) 1/2 pathway was predominantly activated. MEK1/2 inhibitor (U0126) treatment suppressed the mRNA expressions of RA-induced Stra8 and meiotic marker genes (Rec8, Spo11, Dmc1, and Sycp3) in both XX and XY fetal germ cells. Furthermore, U0126 treatment dramatically reduced STRA8 protein levels and numbers of meiotic cells among cultured XX and XY fetal germ cells even in the presence of RA. Taken together, our results suggest the novel concept that the RA functions by stimulating the ERK1/2 pathway and that this activity is critical for Stra8 expression and meiotic progression in fetal germ cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.