The aim of this study was to develop the use of Machine Learning techniques as a means of multivariate analysis in studies of motor control. These studies generate a huge amount of data, the analysis of which continues to be largely univariate. We propose the use of machine learning classification and feature selection as a means of uncovering feature combinations that are altered between conditions. High dimensional electromyogram (EMG) vectors were generated as several arm and trunk muscles were recorded while subjects pointed at various angles above and below the gravity neutral horizontal plane. We used Linear Discriminant Analysis (LDA) to carry out binary classifications between the EMG vectors for pointing at a particular angle, vs. pointing at the gravity neutral direction. Classification success provided a composite index of muscular adjustments for various task constraints—in this case, pointing angles. In order to find the combination of features that were significantly altered between task conditions, we conducted a post classification feature selection i.e., investigated which combination of features had allowed for the classification. Feature selection was done by comparing the representations of each category created by LDA for the classification. In other words computing the difference between the representations of each class. We propose that this approach will help with comparing high dimensional EMG patterns in two ways; (i) quantifying the effects of the entire pattern rather than using single arbitrarily defined variables and (ii) identifying the parts of the patterns that convey the most information regarding the investigated effects.
The aim of this study was to develop the use of Machine Learning techniques as a means of multivariate analysis in studies of motor control. These studies generate a huge amount of data, the analysis of which continues to be largely univariate. We propose the use of machine learning classification and feature selection as a means of uncovering feature combinations that are altered between conditions. High dimensional electromyograms (EMG) vectors were generated as several arm and trunk muscles were recorded while subjects pointed at various angles above and below the gravity neutral horizontal plane. We used Linear Discriminant Analysis (LDA) to carry out binary classifications between the EMG vectors for pointing at a particular angle, versus pointing at the gravity neutral direction. Classification success provided a composite index of muscular adjustments for various task constraints (in this case, pointing angles). In order to find the combination of features that were significantly altered between task conditions, we conducted a post classification feature selection i.e. investigated which combination of features had allowed for the classification. Feature selection was done by comparing the representations of each category created by LDA for the classification. In other words computing the difference between the representations of each class. We propose that this approach will help with comparing high dimensional EMG patterns in two ways; i) quantifying the effects of the entire pattern rather than using single arbitrarily defined variables and ii) identifying the parts of the patterns that convey the most information regarding the investigated effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.