Mesenchymal stem cells (MSC) derived from bone marrow stem cells (BMSC) and adipose tissue stem cells (ASC) of humans and rhesus macaques were evaluated for their cell cycle properties during protracted culture in vitro. Human ASCs (hASC) and rhesus BMSCs (rBMSC) underwent significantly more total population doublings than human BMSCs (hBMSC) and rhesus ASCs (rASC). The cell cycle profile of all MSCs was altered as cultures aged. hMSCs underwent an increase in the frequency of cells in the S phase at P20 and P30. However, rhesus MSCs from both sources developed a distinct polyploid population of cells at P20, which progressed to aneuploidy by P30. Karyotype analysis of MSCs revealed the development of tetraploid or aneuploid karyotypes in the rhesus cells at P20 or P30. Analysis of the transcriptome of the MSCs from early and late passages revealed significant alterations in the patterns of gene expression (8.8% of the genes were differentially expressed in hBMSCs versus hASCs, and 5.5% in rBMSCs versus rASCs). Gene expression changes were much less evident within the same cell type as aging occurred (0.7% in hMSCs and 0.9% in rMSC). Gene ontology analysis showed that functions involved in protein catabolism and regulation of pol II transcription were overrepresented in rASCs, whereas the regulation of IKB/nuclear factor-KB cascade were overrepresented in hBMSCs. Functional analysis of genes that were differentially expressed in rASCs and hBMSCs revealed that pathways involved in cell cycle, cell cycle checkpoints, protein-ubiquitination, and apoptosis were altered. [Cancer Res 2008;68(11):4229-38]
The ICF syndrome (i̲mmunodeficiency, c̲entromeric region instability, f̲acial anomalies) is a unique DNA methylation deficiency disease diagnosed by an extraordinary collection of chromosomal anomalies specifically in the vicinity of the centromeres of chromosomes 1 and 16 (Chr1 and Chr16) in mitogen-stimulated lymphocytes. These aberrations include decondensation of centromere-adjacent (qh) heterochromatin, multiradial chromosomes with up to 12 arms, and whole-arm deletions. We demonstrate that lymphoblastoid cell lines from two ICF patients exhibit these Chr1 and Chr16 anomalies in 61% of the cells and continuously generate 1qh or 16qh breaks. No other consistent chromosomal abnormality was seen except for various telomeric associations, which had not been previously noted in ICF cells. Surprisingly, multiradials composed of arms of both Chr1 and Chr16 were favored over homologous associations and cells containing multiradials with 3 or >4 arms almost always displayed losses or gains of Chr1 or Chr16 arms from the metaphase. Our results suggest that decondensation of 1qh and 16qh often leads to unresolved Holliday junctions, chromosome breakage, arm missegregation, and the formation of multiradials that may yield more stable chromosomal abnormalities, such as translocations. These cell lines maintained the abnormal hypomethylation in 1qh and 16qh seen in ICF tissues. The ICF-specific hypomethylation occurs in only a small percentage of the genome, e.g., ICF brain DNA had 7% less 5-methylcytosine than normal brain DNA. The ICF lymphoblastoid cell lines, therefore, retain not only the ICF-specific pattern of chromosome rearrangements, but also of targeted DNA hypomethylation. This hypomethylation of heterochromatic DNA sequences is seen in many cancers and may predispose to chromosome rearrangements in cancer as well as in ICF.
ICF (immunodeficiency, centromeric region instability and facial anomalies) is a recessive disease caused by mutations in the DNA methyltransferase 3B gene (DNMT3B). Patients have immunodeficiency, chromosome 1 (Chr1) and Chr16 pericentromeric anomalies in mitogen-stimulated lymphocytes, a small decrease in overall genomic 5-methylcytosine levels and much hypomethylation of Chr1 and Chr16 juxtacentromeric heterochromatin. Microarray expression analysis was done on B-cell lymphoblastoid cell lines (LCLs) from ICF patients with diverse DNMT3B mutations and on control LCLs using oligonucleotide arrays for approximately 5600 different genes, 510 of which showed a lymphoid lineage-restricted expression pattern among several different lineages tested. A set of 32 genes had consistent and significant ICF-specific changes in RNA levels. Half of these genes play a role in immune function. ICF-specific increases in immunoglobulin (Ig) heavy constant mu and delta RNA and cell surface IgM and IgD and decreases in Ig(gamma) and Ig(alpha) RNA and surface IgG and IgA indicate inhibition of the later steps of lymphocyte maturation. ICF-specific increases were seen in RNA for RGS1, a B-cell specific inhibitor of G-protein signaling implicated in negative regulation of B-cell migration, and in RNA for the pro-apoptotic protein kinase C eta gene. ICF-associated decreases were observed in RNAs encoding proteins involved in activation, migration or survival of lymphoid cells, namely, transcription factor negative regulator ID3, the enhancer-binding MEF2C, the iron regulatory transferrin receptor, integrin beta7, the stress protein heme oxygenase and the lymphocyte-specific tumor necrosis factor receptor family members 7 and 17. No differences in promoter methylation were seen between ICF and normal LCLs for three ICF upregulated genes and one downregulated gene by a quantitative methylation assay [combined bisulfite restriction analysis (COBRA)]. Our data suggest that DNMT3B mutations in the ICF syndrome cause lymphogenesis-associated gene dysregulation by indirect effects on gene expression that interfere with normal lymphocyte signaling, maturation and migration.
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births 1,2 , 60-80% of all miscarriages 3,4
The isolation and characterization of embryonic and adult stem cells from higher-order mammalian species will enhance the understanding of the biology and therapeutic application of stem cells. The aim of this study was to purify rhesus mesenchymal stem cells (MSCs) from adult bone marrow and to characterize functionally their abilities to differentiate along diverse lineages. Adherent cells from adult rhesus macaque bone marrow were characterized for their growth characteristics, lineage differentiation, cell-surface antigen expression, telomere length, chromosome content, and transcription factor gene expression. Rhesus bone marrow MSCs (BMSCs) are very heterogeneous, composed of primarily long, thin cells and some smaller, round cells. The cells are capable of differentiating along osteogenic, chondrogenic, and adipogenic lineages in vitro. The cell morphology and multipotential differentiation capabilities are maintained throughout extended culture. They express CD59, CD90 (Thy-1), CD105, and HLA-1 and were negative for hematopoietic markers such as CD3, CD4, CD8, CD11b, CD13, CD34, and platelet endothelial cell adhesion molecule-1 (CD31). BMSCs were also demonstrated to express the mRNA for important stem cell-related transcription factors such as Oct-4, Sox-2, Rex-1, and Nanog. Rhesus BMSCs have a normal chromosome content, and the shortening of telomeres is minimal during early passages. These data demonstrate that BMSCs isolated from rhesus macaques have a high degree of commonality with MSCs isolated from other species. Therefore, isolation of these cells provides an effective and convenient method for rapid expansion of pluripotent rhesus MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.