Cancer-associated DNA hypomethylation is as prevalent as cancer-linked hypermethylation, but these two types of epigenetic abnormalities usually seem to affect different DNA sequences. Much more of the genome is generally subject to undermethylation rather than overmethylation. Genomic hypermethylation in cancer has been observed most often in CpG islands in gene regions. In contrast, very frequent hypomethylation is seen in both highly and moderately repeated DNA sequences in cancer, including heterochromatic DNA repeats, dispersed retrotransposons, and endogenous retroviral elements. Also, unique sequences, including transcription control sequences, are often subject to cancer-associated undermethylation. The high frequency of cancer-linked DNA hypomethylation, the nature of the affected sequences, and the absence of associations with DNA hypermethylation are consistent with an independent role for DNA undermethylation in cancer formation or tumor progression. Increased karyotypic instability and activation of tumor-promoting genes by cis or trans effects, that might include altered heterochromatin-euchromatin interactions, may be important consequences of DNA hypomethylation which favor oncogenesis. The relationship of DNA hypomethylation to tumorigenesis is important to be considered in the light of cancer therapies involving decreasing DNA methylation. Inducing DNA hypomethylation may have short-term anticancer effects, but might also help speed tumor progression from cancer cells surviving the DNA demethylation chemotherapy.
DNA hypomethylation was the initial epigenetic abnormality recognized in human tumors. However, for several decades after its independent discovery by two laboratories in 1983, it was often ignored as an unwelcome complication, with almost all of the attention on the hypermethylation of promoters of genes that are silenced in cancers (e.g., tumor-suppressor genes). Because it was subsequently shown that global hypomethylation of DNA in cancer was most closely associated with repeated DNA elements, cancer linked-DNA hypomethylation continued to receive rather little attention. DNA hypomethylation in cancer can no longer be considered an oddity, because recent highresolution genome-wide studies confirm that DNA hypomethylation is the almost constant companion to hypermethylation of the genome in cancer, just usually (but not always) in different sequences. Methylation changes at individual CpG dyads in cancer can have a high degree of dependence not only on the regional context, but also on neighboring sites. DNA demethylation during carcinogenesis may involve hemimethylated dyads as intermediates, followed by spreading of the loss of methylation on both strands. In this review, active demethylation of DNA and the relationship of cancer-associated DNA hypomethylation to cancer stem cells are discussed. Evidence is accumulating for the biological significance and clinical relevance of DNA hypomethylation in cancer, and for cancer-linked demethylation and de novo methylation being highly dynamic processes. Keywordscancer; DNA methylation; DNA repeats; genomic sequencing; hypermethylation; hypomethylation DNA hypomethylation: a ubiquitous feature of carcinogenesisThe first-described epigenetic changes in human cancer were losses of DNA methylation (m 5 C residues replaced by unmethylated C residues) reported in 1983. We observed this alteration of DNA methylation throughout the genome in various cancers versus a wide variety of normal tissues [1], and Feinberg and Vogelstein described hypomethylation of a few cancerirrelevant gene regions in colon adenocarcinomas versus normal colonic epithelium [2,3]. It was apparent that metastases were even more susceptible to cancer-linked DNA In memoriam: This article is dedicated to the memory of Charles Gehrke, PhD and Professor of Biochemistry, University of Missouri, Columbia. His expertise in analytical biochemistry and gracious willingness to collaborate with me, starting in 1979, when I was very much his junior, were critical to launching my career in the then nonexistent field of cancer epigenetics [1,84].
Repetitive elements represent a large portion of the human genome and contain much of the CpG methylation found in normal human postnatal somatic tissues. Loss of DNA methylation in these sequences might account for most of the global hypomethylation that characterizes a large percentage of human cancers that have been studied. There is widespread interest in correlating the genomic 5-methylcytosine content with clinical outcome, dietary history, lifestyle, etc. However, a high-throughput, accurate and easily accessible technique that can be applied even to paraffin-embedded tissue DNA is not yet available. Here, we report the development of quantitative MethyLight assays to determine the levels of methylated and unmethylated repeats, namely, Alu and LINE-1 sequences and the centromeric satellite alpha (Satα) and juxtacentromeric satellite 2 (Sat2) DNA sequences. Methylation levels of Alu, Sat2 and LINE-1 repeats were significantly associated with global DNA methylation, as measured by high performance liquid chromatography, and the combined measurements of Alu and Sat2 methylation were highly correlative with global DNA methylation measurements. These MethyLight assays rely only on real-time PCR and provide surrogate markers for global DNA methylation analysis. We also describe a novel design strategy for the development of methylation-independent MethyLight control reactions based on Alu sequences depleted of CpG dinucleotides by evolutionary deamination on one strand. We show that one such Alu-based reaction provides a greatly improved detection of DNA for normalization in MethyLight applications and is less susceptible to normalization errors caused by cancer-associated aneuploidy and copy number changes.
Analysis of the total base composition of DNA from seven different normal human tissues and eight different types of homogeneous human cell populations revealed considerable tissue-specific and cell-specific differences in the extent of methylation of cytosine residues. The two most highly methylated DNAs were from thymus and brain with 1.00 and 0.98 mole percent 5-methylcytosine (m5C), respectively. The two least methylated DNAs from in vivo sources were placental DNA and sperm DNA, which had 0.76 and 0.84 mole percent m5C, respectively. The differences between these two groups of samples were significant with p less than 0.01. The m5C content of DNA from six human cell lines or strains ranged from 0.57 to 0.85 mole percent. The major and minor base composition of DNA fractionated by reassociation kinetics was also determined. The distribution of m5C among these fractions showed little or no variation with tissue or cell type with the possible exception of sperm DNA. In each case, nonrepetitive DNA sequences were hypomethylated compared to unfractionated DNA.
The over-all 5-methylcytosine (m5C) content of DNA from normal tissues varies considerably in a tissue-specific manner. By high-performance liquid chromatography, we have examined the m5C contents of enzymatic digests of DNA from 103 human tumors including benign, primary malignant and secondary malignant neoplasms. The diversity and large number of these tumor samples allowed us to compare the range of DNA methylation levels from neoplastic tissues to that of normal tissues from humans. Most of the metastatic neoplasms had significantly lower genomic m5C contents than did most of the benign neoplasms or normal tissues. The percentage of primary malignancies with hypomethylated DNA was intermediate between those of metastases and benign neoplasms. These findings might reflect an involvement of extensive demethylation of DNA in tumor progression. Such demethylation could be a source of the continually generated cellular diversity associated with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.