Analysis of the total base composition of DNA from seven different normal human tissues and eight different types of homogeneous human cell populations revealed considerable tissue-specific and cell-specific differences in the extent of methylation of cytosine residues. The two most highly methylated DNAs were from thymus and brain with 1.00 and 0.98 mole percent 5-methylcytosine (m5C), respectively. The two least methylated DNAs from in vivo sources were placental DNA and sperm DNA, which had 0.76 and 0.84 mole percent m5C, respectively. The differences between these two groups of samples were significant with p less than 0.01. The m5C content of DNA from six human cell lines or strains ranged from 0.57 to 0.85 mole percent. The major and minor base composition of DNA fractionated by reassociation kinetics was also determined. The distribution of m5C among these fractions showed little or no variation with tissue or cell type with the possible exception of sperm DNA. In each case, nonrepetitive DNA sequences were hypomethylated compared to unfractionated DNA.
microRNAs (miRNAs) are endogenous small non-coding RNAs that bind to mRNAs and target them for cleavage and/or translational repression, leading to gene silencing. We previously developed short tandem target mimic (STTM) technology to deactivate endogenous miRNAs in Arabidopsis. Here, we created hundreds of STTMs that target both conserved and species-specific miRNAs in Arabidopsis, tomato, rice, and maize, providing a resource for the functional interrogation of miRNAs. We not only revealed the functions of several miRNAs in plant development, but also demonstrated that tissue-specific inactivation of a few miRNAs in rice leads to an increase in grain size without adversely affecting overall plant growth and development. RNA-seq and small RNA-seq analyses of STTM156/157 and STTM165/166 transgenic plants revealed the roles of these miRNAs in plant hormone biosynthesis and activation, secondary metabolism, and ion-channel activity-associated electrophysiology, demonstrating that STTM technology is an effective approach for studying miRNA functions. To facilitate the study and application of STTM transgenic plants and to provide a useful platform for storing and sharing of information about miRNA-regulated gene networks, we have established an online Genome Browser (https://blossom.ffr.mtu.edu/designindex2.php) to display the transcriptomic and miRNAomic changes in STTM-induced miRNA knockdown plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.