During 2018, four free-ranging conures, from a naturalized flock in San Francisco, presented with a characteristic set of neurologic signs that had been reported in other individuals from this flock. The cause of morbidity or mortality in historic cases has not been identified. From these four subjects, fresh feces were collected during their initial days of hospitalization and submitted to the University of Georgia Infectious Diseases Laboratory and Center for Applied Isotope Studies for bromethalin and desmethyl-bromethalin quantitation. Using High Performance Liquid Chromatography, the laboratory detected bromethalin, a non-anticoagulant, single-dose rodenticide, in fecal samples from three subjects; half of these samples were also positive for desmethyl-bromethalin, bromethalin’s active metabolite. In three subjects that died, the UGA laboratory screened brain and liver samples and found bromethalin in all samples; desmethyl-bromethalin was detected in all but one brain sample, which was below the detection limit. Our findings suggest the conures are more resistant to bromethalin than are other species in which bromethalin has been studied, and/or that the conures may be ingesting the toxin at a sublethal dose. More data is needed to better assess the long-term effects of bromethalin on animals exposed at the subacute/chronic levels, and also to better understand the compartmentalization of bromethalin and desmethyl-bromethalin in a wider variety of species.
Bromethalin is a widely used neurotoxic rodenticide sometimes affecting nontarget wildlife. However, the effects of bromethalin on avian species are largely unknown. Here, we report the neuropathology of 14 feral conures ( Psittacara sp.) with bromethalin toxicosis. Clinically, all birds presented with different degrees of paraparesis that sometimes progressed to dysphagia, ataxia, and tetraparesis. Histologically, there was astrogliosis, pallor, and vacuolation of white matter in the brain. This was usually more prominent in the medial longitudinal fasciculus, pons, optic tectum, cerebellar peduncle, and ventral funiculus. In most affected areas, there was loss of oligodendrocytes, and axons had extensive myelin loss or marked intramyelinic edema with splitting of myelin sheaths at the intraperiod line. Conures with bromethalin toxicosis had neuropathological changes similar to those of mammals exposed to bromethalin but with a characteristic distribution, probably related to higher susceptibility to cytotoxic edema in certain regions of the avian brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.