Triterpenoid saponins are a class of plant secondary metabolites with structure derived from the precursor oxidosqualene in which one or more sugar residues are added. They have a wide range of pharmacological applications, such as antiplatelet, hypocholesterolemic, antitumoral, anti-HIV, immunoadjuvant, anti-inflammatory, antibacterial, insecticide, fungicide and anti-leishmanial agents. Their accumulation in plant cells is stimulated in response to changes mediated by biotic and abiotic elicitors. The enhancement of saponin yields by methyl jasmonate in plants and cell cultures in several species indicates the involvement of these metabolites in plant defence mechanisms. The elucidation of their biosynthesis at the molecular level has advanced recently. Most studies to date have focused on the participation of early enzymes in the pathway, including oxidosqualene cyclase, squalene synthase and dammarenediol synthase, as well as in isolating and characterizing genes that encode beta-amyrin synthase. Yields of bioactive saponins in various plant species and experimental systems have been successfully increased by treating cells and tissues with jasmonate or by exposing these to oxidative stress. These elicitation and molecular studies are consolidating a robust knowledge platform from which to launch the development of improved sources for commercial supply of bioactive saponins.
Plant secondary metabolism evolved in the context of highly organized and differentiated cells and tissues, featuring massive chemical complexity operating under tight environmental, developmental and genetic control. Biotechnological demand for natural products has been continuously increasing because of their significant value and new applications, mainly as pharmaceuticals. Aseptic production systems of plant secondary metabolites have improved considerably, constituting an attractive tool for increased, stable and large-scale supply of valuable molecules. Surprisingly, to date, only a few examples including taxol, shikonin, berberine and artemisinin have emerged as success cases of commercial production using this strategy. The present review focuses on the main characteristics of plant specialized metabolism and their implications for current strategies used to produce secondary compounds in axenic cultivation systems. The search for consonance between plant secondary metabolism unique features and various in vitro culture systems, including cell, tissue, organ, and engineered cultures, as well as heterologous expression in microbial platforms, is discussed. Data to date strongly suggest that attaining full potential of these biotechnology production strategies requires being able to take advantage of plant specialized metabolism singularities for improved target molecule yields and for bypassing inherent difficulties in its rational manipulation.
A good correlation was obtained between the antioxidant activities of Cannabis sativa samples determined by spectrophotometric and electrochemical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.