Emergence of novel SARS-CoV-2 lineages are under the spotlight of the media, scientific community and governments. Recent reports of novel variants in the United Kingdom, South Africa and Brazil (B.1.1.28-E484 K) have raised intense interest because of a possible higher transmission rate or resistance to the novel vaccines. Nevertheless, the spread of B.1.1.28 (E484 K) and other variants in Brazil is still unknown. In this work, we investigated the population structure and genomic complexity of SARS-CoV-2 in Rio Grande do Sul, the southernmost state in Brazil. Most samples sequenced belonged to the B.1.1.28 (E484 K) lineage, demonstrating its widespread dispersion. We were the first to identify two independent events of co-infection caused by the occurrence of B.1.1.28 (E484 K) with either B.1.1.248 or B.1.91 lineages. Also, clustering analysis revealed the occurrence of a novel cluster of samples circulating in the state (named VUI-NP13 L) characterized by 12 lineage-defining mutations. In light of the evidence for E484 K dispersion, co-infection and emergence of VUI-NP13 L in Rio Grande do Sul, we reaffirm the importance of establishing strict and effective social distancing measures to counter the spread of potentially more hazardous SARS-CoV-2 strains.
Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.
Adenovirus (AdV), enterovirus (EV), genogroup A rotaviruses (GARV) and Torque teno virus (TTV) are non-enveloped viral agents excreted in feces and so may contaminate water bodies. In the present study, the molecular detection of these viruses was performed in samples of surface water collected from the Arroio Dilúvio, a waterstream that crosses the city of Porto Alegre, RS, Brazil, receiving great volumes of non-treated sewage from a large urban area. Sampling was performed during 2009, in three different occasions (January, April and September). The highest detection rate was observed for EV (64.28%), followed by TTV (28.57%) and AdV (21.43%). Rotaviruses were not detected. More than on kind of tested virus was detected in five (35. 71%) of 14 samples. January was the month with the highest viral detection rate, being all samples, collected in this month, positive for at least one group of tested virus. The correlation between the detection of these different viral agents and environmental factors is discussed. To the knowledge of the authors, this is the first description of viral genomes in water samples taken from the Arroio Dilúvio, Porto Alegre (Brazil).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.