Bacterial wilt (BW), caused by the Ralstonia solanacearum species complex (RSSC), is the most destructive potato disease in Kenya. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with BW of potato in Kenya, (ii) generate an RSSC distribution map for epidemiological inference, and (iii) determine whether phylotype II sequevar 1 strains exhibit epidemic clonality. Surveys were conducted in 2018 and 2019, in which tubers from wilting potato plants and stem samples of potential alternative hosts were collected for pathogen isolation. The pathogen was phylotyped by multiplex PCR and 536 RSSC strains typed at a sequevar level. Two RSSC phylotypes were identified, phylotype II (98.4%, n = 506 (sequevar 1 (n = 505) and sequevar 2 (n = 1))) and phylotype I (1.6%, n = 30 (sequevar 13 (n = 9) and a new sequevar (n = 21))). The phylotype II sequevar 1 strains were haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. The TRST scheme identified 51 TRST profiles within the phylotype II sequevar 1 strains with a modest diversity index (HGDI = 0.87), confirming the epidemic clonality of RSSC phylotype II sequevar 1 strains in Kenya. A minimum spanning tree and mapping of the TRST profiles revealed that TRST27 ‘8-5-12-7-5’ is the primary founder of the clonal complex of RSSC phylotype II sequevar 1 and is widely distributed via latently infected seed tubers.
Globalization has made agricultural commodities more accessible, available, and affordable. But their global movement increases the potential for invasion by pathogens and necessitates development and implementation of sensitive, rapid, and scalable surveillance methods. Here, we used 35 strains, isolated by multiple diagnostic laboratories, as a case study for using whole genome sequence data in a plant disease diagnostic setting. Twenty-seven of the strains were isolated in 2022 and identified as Xanthomonas hortorum pv. pelargonii. Eighteen of these strains originated from material sold by a plant breeding company that had notified clients following a release of infected geranium cuttings. Analyses of whole genome sequences revealed epidemiological links among the 27 strains from different growers that confirmed a common source of the outbreak and uncovered likely secondary spread events within facilities that housed plants originating from different plant breeding companies. Whole genome sequencing data were also analyzed to reveal how preparatory and analytical methods can impact conclusions on outbreaks of clonal pathogenic strains. Results demonstrate the potential power of using whole genome sequencing among a network of diagnostic labs and highlight how sharing such data can help shorten response times to mitigate outbreaks more expediently and precisely than standard methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.