The biological potency of botulinum toxin type A (BoNTA) in biotechnology-derived products was assessed by the mouse LD50 bioassay (MBA) and the T47D cell culture assay.
Reversed-phase and size-exclusion liquid chromatography methods were validated for the assessment of streptokinase. The reversed-phase method was carried out on a Jupiter C column (250 mm × 4.6 mm id) maintained at 25°C. The mobile phase consisted of 50 mM sodium sulfate solution pH 7.0 and methanol (90:10, v/v), run isocratically at a flow rate of 0.8 mL/min. The size-exclusion method was carried out on a Protein KW 802.5 column (300 mm × 8.0 mm id), at 25°C. The mobile phase consisted of 40 mM sodium acetate solution pH 7.0, run isocratically at a flow rate of 1.0 mL/min. Retention times were 19.3 min, and 14.1 min, and calibration curves were linear over the concentration range of 0.25-250 μg/mL (25.75-25 750 IU/mL) (r = 0.9997) and 5-80 μg/mL (515-8240 IU/mL) (r = 0.9996), respectively, for reversed-phase and size exclusion, with detection at 220 and 204 nm. Chromatographic methods were employed in conjunction with the in vitro bioassay for the content/potency assessment of Streptokinase, contributing to improve the quality control and ensure the efficacy of the biotherapeutic.
Recombinant human erythropoietin is a sialoglycoprotein that stimulates erythropoiesis. To assess potency of human erythropoietin produced by recombinant technology, we investigated an in vitro TF-1 cell proliferation assay, which was applied in conjunction with a reversed-phase liquid chromatography method for the determination of the content of sialic acids. The results obtained, which were higher than 126.8ng/μg, were compared with those obtained with the in vivo normocythaemic mouse bioassay. The in vitro assay resulted in a non-significant lower mean difference of the estimated potencies (0.61% ± 0.026, p > 0.05). The use of this combination of methods represents an advance toward the establishment of alternative in vitro approaches, in the context of the Three Rs, for the potency assessment of biotechnology-derived medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.