This N = 173,426 social science dataset was collected through the collaborative COVIDiSTRESS Global Survey – an open science effort to improve understanding of the human experiences of the 2020 COVID-19 pandemic between 30th March and 30th May, 2020. The dataset allows a cross-cultural study of psychological and behavioural responses to the Coronavirus pandemic and associated government measures like cancellation of public functions and stay at home orders implemented in many countries. The dataset contains demographic background variables as well as measures of Asian Disease Problem, perceived stress (PSS-10), availability of social provisions (SPS-10), trust in various authorities, trust in governmental measures to contain the virus (OECD trust), personality traits (BFF-15), information behaviours, agreement with the level of government intervention, and compliance with preventive measures, along with a rich pool of exploratory variables and written experiences. A global consortium from 39 countries and regions worked together to build and translate a survey with variables of shared interests, and recruited participants in 47 languages and dialects. Raw plus cleaned data and dynamic visualizations are available.
Learned Categorical Perception (CP) occurs when the members of different categories come to look more dissimilar (“between-category separation”) and/or members of the same category come to look more similar (“within-category compression”) after a new category has been learned. To measure learned CP and its physiological correlates we compared dissimilarity judgments and Event Related Potentials (ERPs) before and after learning to sort multi-featured visual textures into two categories by trial and error with corrective feedback. With the same number of training trials and feedback, about half the subjects succeeded in learning the categories (“Learners”: criterion 80% accuracy) and the rest did not (“Non-Learners”). At both lower and higher levels of difficulty, successful Learners showed significant between-category separation—and, to a lesser extent, within-category compression—in pairwise dissimilarity judgments after learning, compared to before; their late parietal ERP positivity (LPC, usually interpreted as decisional) also increased and their occipital N1 amplitude (usually interpreted as perceptual) decreased. LPC amplitude increased with response accuracy and N1 amplitude decreased with between-category separation for the Learners. Non-Learners showed no significant changes in dissimilarity judgments, LPC or N1, within or between categories. This is behavioral and physiological evidence that category learning can alter perception. We sketch a neural net model predictive of this effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.