Plants defend themselves from most microbial attacks via mechanisms including cell wall fortification, production of antimicrobial compounds, and generation of reactive oxygen species. Successful pathogens overcome these host defenses, as well as obtain nutrients from the host. Perturbations of plant metabolism play a central role in determining the outcome of attempted infections. Metabolomic analyses, for example between healthy, newly infected and diseased or resistant plants, have the potential to reveal perturbations to signaling or output pathways with key roles in determining the outcome of a plant–microbe interaction. However, application of this -omic and its tools in plant pathology studies is lagging relative to genomic and transcriptomic methods. Thus, it is imperative to bring the power of metabolomics to bear on the study of plant resistance/susceptibility. This review discusses metabolomics studies that link changes in primary or specialized metabolism to the defense responses of plants against bacterial, fungal, nematode, and viral pathogens. Also examined are cases where metabolomics unveils virulence mechanisms used by pathogens. Finally, how integrating metabolomics with other -omics can advance plant pathology research is discussed.
Ratoon stunt (RS) is a worldwide disease that reduces biomass up to 80% and is caused by the xylem-dwelling bacterium Leifsonia xyli subsp. xyli. This study identified discriminant metabolites between a resistant (R) and a susceptible (S) sugarcane variety at the early stages of pathogen colonization (30 and 120 days after inoculation—DAI) by untargeted and targeted metabolomics of leaves and xylem sap using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Bacterial titers were quantified in sugarcane extracts at 180 DAI through real-time polymerase chain reaction. Bacterial titers were at least four times higher on the S variety than in the R one. Global profiling detected 514 features in the leaves and 68 in the sap, while 119 metabolites were quantified in the leaves and 28 in the sap by targeted metabolomics. Comparisons between mock-inoculated treatments indicated a greater abundance of amino acids in the leaves of the S variety and of phenolics, flavonoids, and salicylic acid in the R one. In the xylem sap, fewer differences were detected among phenolics and flavonoids, but also included higher abundances of the signaling molecule sorbitol and glycerol in R. Metabolic changes in the leaves following pathogen inoculation were detected earlier in R than in S and were mostly related to amino acids in R and to phosphorylated compounds in S. Differentially represented metabolites in the xylem sap included abscisic acid. The data represent a valuable resource of potential biomarkers for metabolite-assisted selection of resistant varieties to RS.
IntroductionProducts of plant secondary metabolism, such as phenolic compounds, flavonoids, alkaloids, and hormones, play an important role in plant growth, development, stress resistance. The plant family Rubiaceae is extremely diverse and abundant in Central America and contains several economically important genera, e.g. Coffea and other medicinal plants. These are known for the production of bioactive polyphenols (e.g. caffeine and quinine), which have had major impacts on human society. The overall goal of this study was to develop a high-throughput workflow to identify and quantify plant polyphenols.MethodsFirst, a method was optimized to extract over 40 families of phytochemicals. Then, a high-throughput metabolomic platform has been developed to identify and quantify 184 polyphenols in 15 min.ResultsThe current metabolomics study of secondary metabolites was conducted on leaves from one commercial coffee variety and two wild species that also belong to the Rubiaceae family. Global profiling was performed using liquid chromatography high-resolution time-of-flight mass spectrometry. Features whose abundance was significantly different between coffee species were discriminated using statistical analysis and annotated using spectral databases. The identified features were validated by commercially available standards using our newly developed liquid chromatography tandem mass spectrometry method.DiscussionCaffeine, trigonelline and theobromine were highly abundant in coffee leaves, as expected. Interestingly, wild Rubiaceae leaves had a higher diversity of phytochemicals in comparison to commercial coffee: defense-related molecules, such as phenylpropanoids (e.g., cinnamic acid), the terpenoid gibberellic acid, and the monolignol sinapaldehyde were found more abundantly in wild Rubiaceae leaves.
352 SummaryRoots of Syagrus oleracea were collected in two growing areas in the municipality of Rio Verde, state of Goiás (Brazil). Morphological, morphometric and molecular (ITS1 sequences) approaches allowed us to identify the infecting nematode as Pratylenchus brachyurus. To our knowledge, this is the first record of P. brachyurus parasitizing guariroba elsewhere (new host).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.