The aim of this study was to produce epoxidized monoalkyl esters (EMAE), a valuable class of oleochemicals used in a wide range of products and industries, from used soybean cooking oil (USCO) and fusel oil via a three-step chemoenzymatic process. This process consists of a first enzymatic hydrolysis of USCO to produce free fatty acids (FFA). Here, five microbial lipases with different specificities were tested as biocatalysts. Full hydrolysis of USCO was obtained after a 180 min reaction time under vigorous stirring (1500 rpm) using a non-specific lipase from Candida rugosa (CRL). Then, monoalkyl esters (MAE) were produced via the esterification of FFA and fusel oil in a solvent-free system using the lipase Eversa® Transform 2.0 (ET2.0) immobilized via physical adsorption on poly(styrenene-divinylbenzene) (PSty-DVB) beads as a biocatalyst. Different water removal strategies (closed and open reactors in the presence or absence of molecular sieves at 5% m.m−1) on the reaction were evaluated. Maximum FFA conversions of 64.3 ± 2.3% (open reactor after a 30 min reaction time) and 73.5 ± 0.4% (closed reactor after a 45 min reaction time) were observed at 40 °C, using a stoichiometric FFA:fusel oil molar ratio (1:1), without molecular sieves, and 5 mg of immobilized protein per gram of reaction mixture. Under these conditions, maximum FFA conversion was only 30.2 ± 2.7% after a 210 min reaction time in a closed reactor using soluble lipase. Reusability tests showed better retention of the original activity of immobilized ET2.0 (around 82%) after eight successive batches of esterification reactions conducted in an open reactor. Finally, the produced MAE was epoxidized via the Prilezhaev reaction, a classical chemical epoxidation process, using hydrogen peroxide and formic acid as a homogeneous catalyst. The products were characterized by standard methods and identified using proton nuclear magnetic resonance (1H NMR). Maximum unsaturated bond conversions into epoxy groups were at approximately 33%, with the experimental epoxy oxygen content (OOCexp.) at 1.75–1.78%, and selectivity (S) at 0.81, using both MAEs produced (open or closed reactors). These results show that this new process is a promising approach for value-added oleochemical production from low-cost and renewable raw materials.
The aim of this study was to produce several flavor esters via esterification of octanoic acid with different commercial short-chain alcohols (methanol, propanol, isoamyl alcohol, hexanol and benzyl alcohol) and fusel oil in solvent-free systems. Lipase Eversa® Transform 2.0 immobilized via mechanism of interfacial activation on poly(styrenene-divinylbenzene) (PSty-DVB) beads was used as heterogeneous biocatalyst and its catalytic performance was compared with that of the soluble lipase. The heterogeneous biocatalyst was prepared by employing 5 mmol.L−1 buffer sodium acetate at pH 5.0 and 25 °C using an initial protein loading of 40 mg·g−1. The maximum amount of immobilized protein reached was 31 mg·g−1, corresponding to an immobilization yield of 80%. Mass transfer studies demonstrated that the lipase was preferentially adsorbed inside the pores of the support, which was confirmed by scanning electron microscopy analysis. Lipase immobilization can be described by a pseudo-first-order kinetic model via a physisorption process. When used as biocatalysts of the target reactions, the highest conversion percentage (between 65 and 85% of acid conversion after 60–90 min of reaction) values were achieved for esterification reactions catalyzed by immobilized lipase. Reusability tests revealed high retention of the original activity of the immobilized lipase after six successive batch reactions using isoamyl alcohol (47%) and fusel oil (72%). The proposed reaction systems can be considered green processes (EcoScale score above 80), with exception of methanol medium, classified as an acceptable green process (EcoScale score of 68). These results show that the heterogeneous biocatalyst prepared can be an economic and sustainable option for flavor esters production on an industrial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.