The aim of this study was to produce epoxidized monoalkyl esters (EMAE), a valuable class of oleochemicals used in a wide range of products and industries, from used soybean cooking oil (USCO) and fusel oil via a three-step chemoenzymatic process. This process consists of a first enzymatic hydrolysis of USCO to produce free fatty acids (FFA). Here, five microbial lipases with different specificities were tested as biocatalysts. Full hydrolysis of USCO was obtained after a 180 min reaction time under vigorous stirring (1500 rpm) using a non-specific lipase from Candida rugosa (CRL). Then, monoalkyl esters (MAE) were produced via the esterification of FFA and fusel oil in a solvent-free system using the lipase Eversa® Transform 2.0 (ET2.0) immobilized via physical adsorption on poly(styrenene-divinylbenzene) (PSty-DVB) beads as a biocatalyst. Different water removal strategies (closed and open reactors in the presence or absence of molecular sieves at 5% m.m−1) on the reaction were evaluated. Maximum FFA conversions of 64.3 ± 2.3% (open reactor after a 30 min reaction time) and 73.5 ± 0.4% (closed reactor after a 45 min reaction time) were observed at 40 °C, using a stoichiometric FFA:fusel oil molar ratio (1:1), without molecular sieves, and 5 mg of immobilized protein per gram of reaction mixture. Under these conditions, maximum FFA conversion was only 30.2 ± 2.7% after a 210 min reaction time in a closed reactor using soluble lipase. Reusability tests showed better retention of the original activity of immobilized ET2.0 (around 82%) after eight successive batches of esterification reactions conducted in an open reactor. Finally, the produced MAE was epoxidized via the Prilezhaev reaction, a classical chemical epoxidation process, using hydrogen peroxide and formic acid as a homogeneous catalyst. The products were characterized by standard methods and identified using proton nuclear magnetic resonance (1H NMR). Maximum unsaturated bond conversions into epoxy groups were at approximately 33%, with the experimental epoxy oxygen content (OOCexp.) at 1.75–1.78%, and selectivity (S) at 0.81, using both MAEs produced (open or closed reactors). These results show that this new process is a promising approach for value-added oleochemical production from low-cost and renewable raw materials.
The present study consists of developing an enzymatic process for the production of wax esters (lauryl stearate and cetyl stearate) by esterification in a heptane medium. Lipase from Thermomyces lanuginosus (TLL) immobilized via interfacial activation on silica particles from rice husks functionalized with triethoxy(octyl)silane (TLL–Octyl–SiO2) was used as biocatalyst. Maximum immobilized protein loading of around 22 mg g−1 (that corresponds to an immobilization yield of ≈55%) of support was observed using an initial protein loading of 40 mg g−1 of Octyl–SiO2. Its hydrolytic activity (olive oil emulsion hydrolysis) was of 620 U g−1 of biocatalyst. The effect of certain factors on the cetyl estearate production was evaluated using a central composite rotatable design (CCDR). Under optimal conditions (64°C, 21% of mass of biocatalyst per volume of reaction mixture, 170 rpm, and stoichiometric acid:alcohol molar ratio 1 mol L−1 of each reactant), maximum acid conversion percentage of 91% was observed after 60 min of reaction. Lauryl stearate was also produced under such conditions, and an acid conversion of 93% after 60 min of reaction was also achieved. Free lipase exhibited acid conversion of only 15%–20% for both reaction mixtures. After nine successive esterification batches, TLL–Octyl–SiO2 retained 85%–90% of its original activity. These results show the promising use of the prepared biocatalyst in wax esters production due to its high catalytic activity and reusability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.