The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines.
Reactogenicity represents the physical manifestation of the inflammatory response to vaccination, and can include injection-site pain, redness, swelling or induration at the injection site, as well as systemic symptoms, such as fever, myalgia, or headache. The experience of symptoms following vaccination can lead to needle fear, long-term negative attitudes and non-compliant behaviours, which undermine the public health impact of vaccination. This review presents current knowledge on the potential causes of reactogenicity, and how host characteristics, vaccine administration and composition factors can influence the development and perception of reactogenicity. The intent is to provide an overview of reactogenicity after vaccination to help the vaccine community, including healthcare professionals, in maintaining confidence in vaccines by promoting vaccination, setting expectations for vaccinees about what might occur after vaccination and reducing anxiety by managing the vaccination setting.
Background CoV2 preS dTM is a stabilised pre-fusion spike protein vaccine produced in a baculovirus expression system being developed against SARS-CoV-2. We present interim safety and immunogenicity results of the first-in-human study of the CoV2 preS dTM vaccine with two different adjuvant formulations. Methods This phase 1–2, randomised, double-blind study is being done in healthy, SARS-CoV-2-seronegative adults in ten clinical research centres in the USA. Participants were stratified by age (18–49 years and ≥50 years) and randomly assigned using an interactive response technology system with block randomisation (blocks of varying size) to receive one dose (on day 1) or two doses (on days 1 and 22) of placebo or candidate vaccine, containing low-dose (effective dose 1·3 μg) or high-dose (2·6 μg) antigen with adjuvant AF03 (Sanofi Pasteur) or AS03 (GlaxoSmithKline) or unadjuvanted high-dose antigen (18–49 years only). Primary endpoints were safety, assessed up to day 43, and immunogenicity, measured as SARS-C0V-2 neutralising antibodies (geometric mean titres), assessed on days 1, 22, and 36 serum samples. Safety was assessed according to treatment received in the safety analysis set, which included all randomly assigned participants who received at least one dose. Neutralising antibody titres were assessed in the per-protocol analysis set for immunogenicity, which included participants who received at least one dose, met all inclusion and exclusion criteria, had no protocol deviation, had negative results in the neutralisation test at baseline, and had at least one valid post-dose serology sample. This planned interim analysis reports data up to 43 days after the first vaccination; participants in the trial will be followed up for 12 months after the last study injection. This trial is registered with ClinicalTrials.gov , NCT04537208 , and is ongoing. Findings Between Sept 3 and Sept 29, 2020, 441 individuals (299 aged 18–49 years and 142 aged ≥50 years) were randomly assigned to one of the 11 treatment groups. The interim safety analyses included 439 (>99%) of 441 randomly assigned participants (299 aged 18–49 years and 140 aged ≥50 years). Neutralising antibody titres were analysed in 326 (74%) of 441 participants (235 [79%] of 299 aged 18–49 years and 91 [64%] of 142 aged ≥50 years). There were no vaccine-related unsolicited immediate adverse events, serious adverse events, medically attended adverse events classified as severe, or adverse events of special interest. Among all study participants, solicited local and systemic reactions of any grade after two vaccine doses were reported in 81% (95% CI 61–93; 21 of 26) of participants in the low-dose plus AF03 group, 93% (84–97; 74 of 80) in the low-dose plus AS03 group, 89% (70–98; 23 of 26) in the high-dose plus AF03 group, 95% (88–99; 81 of 85) in the high-dose plus AS03 group, 29% (10–56; five of 17) in the unadjuvanted high-dos...
Immunogenicity and safety of different adjuvants combined with a model antigen (HBsAg) were compared. Healthy HBV-naïve adults were randomized to receive HBs adjuvanted with alum or Adjuvant Systems AS01B, AS01E, AS03A or AS04 at Days 0 and 30. Different frequencies of HBs-specific CD4+ T cells 14days post dose 2 but similar polyfunctionality profiles were induced by the different adjuvants with frequencies significantly higher in the AS01B and AS01E groups than in the other groups. Antibody concentrations 30days post-dose 2 were significantly higher in AS01B, AS01E and AS03A than in other groups. Limited correlations were observed between HBs-specific CD4+ T cell and antibody responses. Injection site pain was the most common solicited local symptom and was more frequent in AS groups than in alum group. Different adjuvants formulated with the same antigen induced different adaptive immune responses and reactogenicity patterns in healthy naïve adults. The results summary for this study (GSK study number 112115 - NCT# NCT00805389) is available on the GSK Clinical Study Register and can be accessed at www.gsk-clinicalstudyregister.com.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.