Extinction of contextual fear in rats is enhanced by exposure to a novel environment at 1-2 h before or 1 h after extinction training. This effect is antagonized by administration of protein synthesis inhibitors anisomycin and rapamycin into the hippocampus, but not into the amygdala, immediately after either novelty or extinction training, as well as by the gene expression blocker 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole administered after novelty training, but not after extinction training. Thus, this effect can be attributed to a mechanism similar to synaptic tagging, through which long-term potentiation can be enhanced by other long-term potentiations or by exposure to a novel environment in a protein synthesis-dependent fashion. Extinction learning produces a tag at the appropriate synapses, whereas novelty learning causes the synthesis of plasticity-related proteins that are captured by the tag, strengthening the synapses that generated this tag.
Exposure to a novel environment enhances the extinction of contextual fear. This has been explained by tagging of the hippocampal synapses used in extinction, followed by capture of proteins from the synapses that process novelty. The effect is blocked by the inhibition of hippocampal protein synthesis following the novelty or the extinction. Here, we show that it can also be blocked by the postextinction or postnovelty intrahippocampal infusion of the NMDA receptor antagonist 2-amino-5-phosphono pentanoic acid; the inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII), autocamtide-2-related inhibitory peptide; or the blocker of L-voltage-dependent calcium channels (L-VDCCs), nifedipine. Inhibition of proteasomal protein degradation by β-lactacystin has no effect of its own on extinction or on the influence of novelty thereon but blocks the inhibitory effects of all the other substances except that of rapamycin on extinction, suggesting that their action depends on concomitant synaptic protein turnover. Thus, the tagging-andcapture mechanism through which novelty enhances fear extinction involves more molecular processes than hitherto thought: NMDA receptors, L-VDCCs, CaMKII, and synaptic protein turnover.hippocampus | memory | synaptic tagging and capture | synaptic plasticity | fear conditioning F rey and Morris (1, 2) and their collaborators (3-7) proposed a mechanism whereby relatively "weak" hippocampal longterm potentiation (LTP) or long-term depression (LTD) lasting only a few minutes can nevertheless "tag" the synapses involved with proteins synthesized ad hoc, so that other plasticity-related proteins (PRPs) produced at other sets of synapses by other LTPs or LTDs can be captured by the tagged synapses and strengthen their activity to "long" LTPs or LTDs lasting hours or days (8). LTDs and LTPs can "cross"-tag each other; that is, LTDs can enhance both LTDs and LTPs, and vice versa (6,8). Because many learned behaviors rely on hippocampal LTP or LTD (7-9), among them the processing of novelty (9, 10) and the making of extinction (11-13), interactions between consecutive learnings can also be explained by the "tagging-and-capture" hypothesis (9, 10, 13), whose application to behavior became known as "behavioral tagging and capture" (5, 7, 9, 13). Typically, exposure to a novel environment [e.g., a nonanxiogenic 50 × 50 × 40-cm open field (OF) (5,7,9,10,14)] is interpolated before testing for another task, which becomes enhanced (4-10, 13). The usual reaction to novelty is orienting and exploration (14), followed by habituation of this response (14-16). Habituation is perhaps the simplest form of learning, and it consists of inhibition of the orienting/exploratory response (14, 16).We recently showed that the brief exposure of rats to a novel environment (the OF) within a limited time window enhances the extinction of contextual fear conditioning (CFC) through a mechanism of synaptic tagging and capture (13), which is a previously unidentified example of behavioral tagging of inhibitory lea...
Variations in maternal behavior induce long-lasting effects on behavioral and neuroendocrine responses to stress. The aim of this study was to analyze developmental parameters, reproductive function, and anxiety-related behaviors of male and female rats raised by mothers that naturally display high and low levels of maternal licking behavior. Results showed that an increase in licking behavior received by the pups accelerated their eye opening and reduced fear behavior assessed in the open field test. Additionally, female offspring of high licking (HL) mothers showed decreased ovulation and lordosis intensity. In contrast, males from HL and low licking (LL) mothers did not differ in their reproductive function, suggesting a gender difference in maternal effects. Present results showed that individual differences in maternal behavior appear not only to be predictive of later emotionality and stress-responsivity in the offspring, but can also modulate the reproductive function of females. Maternal genetic factors, differences in the prenatal intrauterine milieu, or a combination of these cannot be excluded to explain the effects observed.
Background: Maternal care refers to the behavior performed by the dam to nourish and protect her litter during its early development. Frequent and high-quality performance of such maternal behaviors is critical for the neurodevelopment of the pups. Maternal exposure to stress during early development can impair maternal care and amplify the deleterious effects of poor maternal caregiving and neglect. As such, a thorough understanding of the effects caused by several models of early life stress on maternal care may yield more insights into the relationship between stress and maternal behavior. Methods: A systematic review was performed to identify and address the effects of early life stress on maternal behavior. The search was conducted using three online databases: PUBMED, Embase, and Web of Science. To provide clear evidence of the impact of stress on maternal care, in every study, the stress group was always compared to a control group. Outcomes were categorized into eight different behaviors: (1) licking/grooming; (2) arched-back nursing; (3) blanket-nursing/passive nursing; (4) nest building; (5) contact with pups; (6) harmful/adverse caregiving; (7) no contact; (8) nest exits. Additionally, the methodological quality of the studies was evaluated. Results: A total of 12 different early life stress protocols were identified from the 56 studies included in this systematic review. Our data demonstrate that different stress models can promote specific maternal patterns of behavior. Regarding the maternal separation protocol, we observed an overall increase in nursing and licking/grooming behaviors, which are essential for pup development. An increase in the number of nest exits, which represents a fragmentation of maternal care, was observed in the limited bedding protocol, but the total amount of maternal care appears to remain similar between groups. Conclusions: Each stress protocol has unique characteristics that increase the difficulty of rendering comparisons of maternal behavior. The increase in maternal care observed in the maternal separation protocol may be an attempt to overcompensate for the time off-nest. Fragmented maternal care is a key component of the limited bedding protocol. Moreover, the methodological approaches to evaluate maternal behavior, such as time, duration, and behavior type should be more homogeneous across studies.
Immediate postretrieval bilateral blockade of long-acting voltagedependent calcium channels (L-VDCCs), but not of glutamatergic NMDA receptors, in the dorsal CA1 region of the hippocampus hinders retention of long-term spatial memory in the Morris water maze. Immediate postretrieval bilateral inhibition of calcium/calmodulindependent protein kinase (CaMK) II in dorsal CA1 does not affect retention of this task 24 h later but does hinder it 5 d later. These two distinct amnesic effects are abolished if protein degradation by proteasomes is inhibited concomitantly. These results indicate that spatial memory reconsolidation depends on the functionality of L-VDCC in dorsal CA1, that maintenance of subsequent reconsolidated memory trace depends on CaMKII, and these results also suggest that the role played by both L-VDCC and CaMKII is to promote the retrieval-dependent, synaptically localized enhancement of protein synthesis necessary to counteract a retrieval-dependent, synaptic-localized enhancement of protein degradation, which has been described as underlying the characteristic labilization of the memory trace triggered by retrieval. Thus, conceivably, L-VDCC and CaMKII would enhance activity-dependent localized protein renewal, which may account for the improvement of the long-term efficiency of the synapses responsible for the maintenance of reactivated long-term spatial memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.