Immediate postretrieval bilateral blockade of long-acting voltagedependent calcium channels (L-VDCCs), but not of glutamatergic NMDA receptors, in the dorsal CA1 region of the hippocampus hinders retention of long-term spatial memory in the Morris water maze. Immediate postretrieval bilateral inhibition of calcium/calmodulindependent protein kinase (CaMK) II in dorsal CA1 does not affect retention of this task 24 h later but does hinder it 5 d later. These two distinct amnesic effects are abolished if protein degradation by proteasomes is inhibited concomitantly. These results indicate that spatial memory reconsolidation depends on the functionality of L-VDCC in dorsal CA1, that maintenance of subsequent reconsolidated memory trace depends on CaMKII, and these results also suggest that the role played by both L-VDCC and CaMKII is to promote the retrieval-dependent, synaptically localized enhancement of protein synthesis necessary to counteract a retrieval-dependent, synaptic-localized enhancement of protein degradation, which has been described as underlying the characteristic labilization of the memory trace triggered by retrieval. Thus, conceivably, L-VDCC and CaMKII would enhance activity-dependent localized protein renewal, which may account for the improvement of the long-term efficiency of the synapses responsible for the maintenance of reactivated long-term spatial memory.
Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.