Carbon black (CB) is a nanostructured material widely used in several industrial processes. This nanomaterial features a set of remarkable properties including high surface area, high thermal and electrical conductivity, and very low cost. Several studies have explored the applicability of CB in electrochemical fields. Recent data showed that modified electrodes based on CB present fast charge transfer and high electroactive surface area, comparable to carbon nanotubes and graphene. These characteristics make CB a promising candidate for the design of electrochemical sensors and biosensors. In this review, we highlight recent advances in the use of CB as a template for biosensing. As will be seen, we discuss the main biosensing strategies adopted for enzymatic catalysis for several target analytes, such as glucose, hydrogen peroxide, and environmental contaminants. Recent applications of CB on DNA-based biosensors are also described. Finally, future challenges and trends of CB use in bioanalytical chemistry are discussed.
A sensitive electrochemical acetylcholinesterase (AChE) biosensor was successfully developed on polyaniline (PANI) and multi-walled carbon nanotubes (MWCNTs) core-shell modified glassy carbon electrode (GC), and used to detect carbamate pesticides in fruit and vegetables (apple, broccoli and cabbage). The pesticide biosensors were applied in the detection of carbaryl and methomyl pesticides in food samples using chronoamperometry (CA). The GC/MWCNT/PANI/AChE biosensor exhibited detection limits of 1.4 and 0.95μmolL(-1), respectively, for carbaryl and methomyl. These detection limits were below the allowable concentrations set by Brazilian regulation standards for the samples in which these pesticides were analysed. Reproducibility and repeatability values of 2.6% and 3.2%, respectively, were obtained in the conventional procedure. The proposed biosensor was successfully applied in the determination of carbamate pesticides in cabbage, broccoli and apple samples without any spiking procedure. The obtained results were in full agreement with those from the HPLC procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.