The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world’s arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently
Aim Small geographic ranges make species especially prone to extinction from anthropogenic disturbances or natural stochastic events. We assemble and analyse a comprehensive dataset of all the world's lizard species and identify the species with the smallest ranges—those known only from their type localities. We compare them to wide‐ranging species to infer whether specific geographic regions or biological traits predispose species to have small ranges. Location Global. Methods We extensively surveyed museum collections, the primary literature and our own field records to identify all the species of lizards with a maximum linear geographic extent of <10 km. We compared their biogeography, key biological traits and threat status to those of all other lizards. Results One in seven lizards (927 of the 6,568 currently recognized species) are known only from their type localities. These include 213 species known only from a single specimen. Compared to more wide‐ranging taxa, they mostly inhabit relatively inaccessible regions at lower, mostly tropical, latitudes. Surprisingly, we found that burrowing lifestyle is a relatively unimportant driver of small range size. Geckos are especially prone to having tiny ranges, and skinks dominate lists of such species not seen for over 50 years, as well as of species known only from their holotype. Two‐thirds of these species have no IUCN assessments, and at least 20 are extinct. Main conclusions Fourteen per cent of lizard diversity is restricted to a single location, often in inaccessible regions. These species are elusive, usually poorly known and little studied. Many face severe extinction risk, but current knowledge is inadequate to properly assess this for all of them. We recommend that such species become the focus of taxonomic, ecological and survey efforts.
Aim Although most reptiles are oviparous, viviparity is a common mode of reproduction in squamates and has evolved multiple times in different lineages. We test two prevailing hypotheses regarding the biogeography of reptile reproductive modes to evaluate the selective forces driving the evolution of viviparity in snakes. The cold climate hypothesis posits that viviparity is selected for in cold climates, whereas the climatic predictability hypothesis predicts that viviparity is advantageous in seasonal climates. Location Global.Methods We collated detailed distribution maps and reproductive mode data for 2663 species of the world's terrestrial alethinophidian snakes. We studied the relationship between snake reproductive mode and environmental predictors. We applied both an ecological and an evolutionary approach to study snake reproductive mode by performing the analyses at the assemblage level and species level, respectively. We analysed our data at the global and continental scales to learn whether tendencies to viviparity are similar world-wide. ResultsWe found strong support for the cold climate hypothesis and the assumption that viviparity is an adaptation to cold environments. There was little support for the climatic predictability hypothesis. Nonetheless, viviparous species are not restricted to cold environments. Main conclusionsWe conclude that viviparity is adaptive in cold climates, but not necessarily in unpredictable/seasonal climates. Current distributions may not reflect the climate at the time and place of speciation. We suspect many viviparous snakes inhabiting warm climates are members of lineages that originated in colder regions, and their occurrence in maladaptive environments is a result of phylogenetic conservatism.
This study determines the composition of amphibian ensembles along a vegetation gradient in the coastal Pacific rainforests in Colombia. Eight environmental and structural variables were measured to characterize the species' habitats and to determine which was most important in structuring amphibian patterns. After a total of 432 man-hours sampling effort, 513 individuals from 32 amphibian species were found. Although the species richness was similar among the vegetation cover types, the composition of the ensembles and total amphibian abundance were different in each case. In addition, a strong relationship was found between changes in the vegetation structure and the amphibian pattern, with the canopy cover being the key variable in the composition of the ensembles for each cover type. Habitats with over 76% canopy cover, combined with a high density of individual woody plants (> 176 individuals per 500 m 2) and a high depth of leaf litter (> 16 cm), provide the necessary habitat conditions for typical rainforest composition of amphibian species. However, for amphibian ensembles to have a mature forest composition, the habitat must have a canopy cover over 89%, a density of woody plants exceeding 231 individuals per 500 m 2 , and a leaf litter depth above 23 cm. Therefore, future studies of amphibian succession and restoration in tropical forests must determine the changes in vegetation structure, rather than the possible direct effect of microclimatic variables.
Aim Understanding the mechanisms determining species richness is a primary goal of biogeography. Richness patterns of sub‐groups within a taxon are usually assumed to be driven by similar processes. However, if richness of distinct ecological strategies respond differently to the same processes, inferences made for an entire taxon may be misleading. We deconstruct the global lizard assemblage into functional groups and examine the congruence among richness patterns between them. We further examine the species richness – functional richness relationship to elucidate the way functional diversity contributes to the overall species richness patterns. Location Global. Methods Using comprehensive biological trait databases we classified the global lizard assemblage into ecological strategies based on body size, diet, activity times and microhabitat preferences, using Archetypal Analysis. We then examined spatial gradients in the richness of each strategy at the one‐degree grid cell, biome, and realm scales. Results We found that lizards can best be characterized by seven “ecological strategies”: scansorial, terrestrial, nocturnal, herbivorous, fossorial, large, and semi‐aquatic. There are large differences among the global richness patterns of these strategies. While the major richness hotspot for lizards in general is in Australia, several strategies exhibit highest richness in the Amazon Basin. Importantly, the global maximum in lizard species richness is achieved at intermediate values of functional diversity and increasing functional diversity further result in a slow decline of species richness. Main conclusions The deconstruction of the global lizard assemblage along multiple ecological axes offers a new way to conceive lizard diversity patterns. It suggests that local lizard richness mostly increases when species belonging to particular ecological strategies become hyper‐diverse there, and not because more ecological types are present in the most species rich localities. Thus maximum richness and maximum ecological diversity do not overlap. These results shed light on the global richness pattern of lizards, and highlight previously unidentified spatial patterns in understudied functional groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.