Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear—a concern given their importance for many ecosystem functions and services.We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reducewithin-sample species richness by anaverage of 76.5%,total abundance by 39.5%andrarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strongmitigationcan delivermuchmore positive biodiversity changes (up to a 1.9%average increase) that are less strongly related to countries’ socioeconomic status
The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world’s arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently
the heat?: a tale of ecology and evolution under two temperatures.Global Ecology and Biogeography, 22 (7). 834-845. 10.1111/geb.12053 Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. their geographic ranges to examine the relationships between these two measures. 49 Location: Worldwide 50Methods: We examined factors influencing body temperatures, and tested for the influence of both 51 body and mean annual temperatures on ecological and life history traits, while accounting for the 52 influence of shared ancestry. 53Results: Body temperatures and mean annual temperatures are uncorrelated. However, accounting 54 for activity time (nocturnal species have low body temperatures), use of space (fossorial and semi-55 aquatic species were "colder"), insularity (mainland species are "hotter") and phylogeny, the two 56 temperatures are positively correlated. High body temperatures are only associated with larger 57 hatchlings (contra the temperature size rule) and with increased rates of biomass production. Annual 58 temperatures are positively correlated with clutch frequency and annual longevity, and negatively 59 correlated with clutch size, age at first reproduction and longevity . High annual temperatures are 60 positively correlated with productivity and brood frequency, but negatively correlated with clutch 61 size, age at first reproduction, and longevity. 62
Longevity is an important life-history trait, directly linked to the core attributes of fitness (reproduction and survival), yet large-scale comparative studies quantifying its implications for the ecology and life history of ectotherms are scarce. We tested the allometry of longevity in squamates and the tuatara, and determined how longevity is related to key environmental characteristics and life-history traits. Predictions based on life-history theory are expected to hold true for ectotherms, similarly to mammals and birds. Location: World-wide. Methods: We assembled from the literature a dataset of the maximum longevities of more than a thousand squamate species, representing c. 10 of their known species diversity, their phylogenetic relationships and multiple life-history and ecological variables. Correcting for phylogeny, we modelled the link between squamate longevity and both key life-history traits, such as body mass and age at first reproduction, and important environmental factors, such as latitude and primary productivity within species distributional ranges. Results: Large-bodied species live for longer than small ones, but body size explains far less of the variance in longevity than it does in mammals and birds. Accounting for body size, squamate brood frequency is negatively correlated with longevity, while age at first reproduction is positively correlated with longevity. This points to a continuum of slow-to-fast life-history strategies. Squamates in high latitudes and cold regions live for longer, probably because a shorter season of activity translates to slower development, older age at first reproduction and hence to increased longevity. Individuals live longer in captivity than in the wild. Herbivorous and omnivorous squamates live for longer than carnivorous ones. We postulate that low-quality nutrition reduces growth rates, promotes a relative decline in reproductive rates and thus prolongs life. Main conclusions: Our results support key predictions from life-history theory and suggest that reproducing more slowly and at older ages, being herbivorous and, plausibly, lowering metabolism, result in increased longevity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.