This study proposes the determination of the electronic delocalization contribution to the Anomeric Effect (EDCAE, Delta Delta E(deloc), eq 3) as a computational alternative in the evaluation of the excess of the axial preference shown by an electronegative substituent located at alpha position to the annular heteroatom of a heterocyclic compound (anomeric position) in both the presence and the absence of electronic delocalization retaining the same molecular geometry. The determination of the EDCAE is computationally accessible through the application of the natural bond orbital analysis (NBO). This type of analysis allows the comparison of hypothetical molecules lacking electronic delocalization (Lewis molecules, in which the electrons are strictly located in bonds and lone pairs) with the fully delocalized molecules retaining the same geometry and the evaluation of the anomeric effect in terms of eq 3. The role of the Lewis molecules is the same as the cyclohexane used experimentally to evaluate the anomeric effect. The advantage of doing this is that Lewis molecules are stereoelectronically inert. Applying this methology to cyclic and acyclic molecules at B3LYP/6-31G(d,p) and HF/6-31G(d,p)//B3LYP/6-31G(d,p) levels of theory, we found that the anomeric effect shown by Cl in 1,3-dioxane; F, Cl, SMe, PH(3), and CO(2)Me groups in 1,3-dithiane is of stereoelectronic nature while the preference of F, OMe, and NH(2) in 1,3-dioxane and the P(O)Me(2) group in 1,3-dithiane is not. Furthermore, this methodology shows that anomeric effects without stereoelectronic origin can modify the molecular geometry in agreement with the geometric pattern required by the double-bond no-bond model, as recently proposed by Perrin.
Key Points.• We validate a method to convert from sub-mm opacity to PWV.• Tipper data was successfully calibrated and correlate to high degree with data from independent sources.• Found a PWV ratio between Cerro Chajnantor and Chajnantor Plateau of 0.68.In this work, we present results from a long-term precipitable water vapor (PWV) study in the Chajnantor area, in northern Chile. Data from several instruments located at relevant sites for sub-millimeter and mid-infrared astronomy were processed to obtain relations between the atmospheric conditions among the sites. The data used for this study can be considered the richest dataset to date, because of the geographical sampling of the region, including sites at different altitudes, a time span from 2005 to 2014, and the different techniques and instruments used for the measurements. We validate a method to convert atmospheric opacity from 350 µm tipper radiometers to PWV. An average of 0.68 PWV ratio between Cerro Chajnantor and Llano of Chajnantor was found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.