This paper investigates the use of deep learning techniques in order to perform energy demand forecasting. To this end, the authors propose a mixed architecture consisting of a convolutional neural network (CNN) coupled with an artificial neural network (ANN), with the main objective of taking advantage of the virtues of both structures: the regression capabilities of the artificial neural network and the feature extraction capacities of the convolutional neural network. The proposed structure was trained and then used in a real setting to provide a French energy demand forecast using Action de Recherche Petite Echelle Grande Echelle (ARPEGE) forecasting weather data. The results show that this approach outperforms the reference Réseau de Transport d’Electricité (RTE, French transmission system operator) subscription-based service. Additionally, the proposed solution obtains the highest performance score when compared with other alternatives, including Autoregressive Integrated Moving Average (ARIMA) and traditional ANN models. This opens up the possibility of achieving high-accuracy forecasting using widely accessible deep learning techniques through open-source machine learning platforms.
This paper investigates the use of deep learning techniques to perform energy demand forecasting. Specifically, the authors have adapted a deep neural network originally thought for image classification and composed of a convolutional neural network (CNN) followed by a multilayered fully connected artificial neural network (ANN). The convolutional part of the network was fed with a grid of temperature forecasting data distributed in the area of interest in order to extract a featured temperature. The subsequent ANN is then fed with this calculated temperature along with other data related to the timing of the forecast. The proposed structure was first trained and then used in a real setting aimed to provide the French energy demand forecast using ARPEGE forecasting weather data. The results show that the performance of this approach is in the line of the performance provided by the reference RTE subscription-based service, which opens the possibility to obtain high accuracy forecasting using widely accessible deep learning techniques through open-source machine learning platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.