Sales of reputed, Mexican tequila grown substantially in last years and, therefore, counterfeiting is increasing steadily. Hence, methodologies intended to characterize and authenticate commercial beverages are a real need. They require a combination of analytical characterization and chemometric tools. This work reports concisely on the former and focus on the chemometric tools employed so far in connection with them. Further, a practical case study presents the classification capabilities of nine supervised classification methods to differentiate white, rested, aged and extra-aged tequilas. The largest set of certified tequilas employed so far was considered. In general, non linear methods performed best than linear ones (accuracy higher than 94% in both training and validation). The case study demonstrates that it is possible to develop fast, cheap, easy to implement and reliable analytical methodologies to authenticate and classify samples of tequilas.
This paper investigates the use of deep learning techniques in order to perform energy demand forecasting. To this end, the authors propose a mixed architecture consisting of a convolutional neural network (CNN) coupled with an artificial neural network (ANN), with the main objective of taking advantage of the virtues of both structures: the regression capabilities of the artificial neural network and the feature extraction capacities of the convolutional neural network. The proposed structure was trained and then used in a real setting to provide a French energy demand forecast using Action de Recherche Petite Echelle Grande Echelle (ARPEGE) forecasting weather data. The results show that this approach outperforms the reference Réseau de Transport d’Electricité (RTE, French transmission system operator) subscription-based service. Additionally, the proposed solution obtains the highest performance score when compared with other alternatives, including Autoregressive Integrated Moving Average (ARIMA) and traditional ANN models. This opens up the possibility of achieving high-accuracy forecasting using widely accessible deep learning techniques through open-source machine learning platforms.
This paper aims to provide the smart grid research community with an open and accessible general mathematical framework to develop and implement optimal flexibility mechanisms in large-scale network applications. The motivation of this paper is twofold. On the one hand, flexibility mechanisms are currently a hot topic of research, which is aimed to mitigate variation and uncertainty of electricity demand and supply in decentralised grids with a high aggregated share of renewables. On the other hand, a large part of such related research is performed by heuristic methods, which are generally inefficient (such methods do not guarantee optimality) and difficult to extrapolate for different use cases. Alternatively, this paper presents an MPC-based (model predictive control) framework explicitly including a generic flexibility mechanism, which is easy to particularise to specific strategies such as demand response, flexible production and energy efficiency services. The proposed framework is benchmarked with other non-optimal control configurations to better show the advantages it provides. The work of this paper is completed by the implementation of a generic use case, which aims to further clarify the use of the framework and, thus, to ease its adoption by other researchers in their specific flexibility mechanism applications.
This paper investigates the use of deep learning techniques to perform energy demand forecasting. Specifically, the authors have adapted a deep neural network originally thought for image classification and composed of a convolutional neural network (CNN) followed by a multilayered fully connected artificial neural network (ANN). The convolutional part of the network was fed with a grid of temperature forecasting data distributed in the area of interest in order to extract a featured temperature. The subsequent ANN is then fed with this calculated temperature along with other data related to the timing of the forecast. The proposed structure was first trained and then used in a real setting aimed to provide the French energy demand forecast using ARPEGE forecasting weather data. The results show that the performance of this approach is in the line of the performance provided by the reference RTE subscription-based service, which opens the possibility to obtain high accuracy forecasting using widely accessible deep learning techniques through open-source machine learning platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.