We propose an outgrowth of the expansion method introduced by de Azcárraga et al. [Nucl. Phys. B 662 (2003) 185]. The basic idea consists in considering the direct product between an abelian semigroup S and a Lie algebra g. General conditions under which relevant subalgebras can systematically be extracted from S ×g are given. We show how, for a particular choice of semigroup S, the known cases of expanded algebras can be reobtained, while new ones arise from different choices. Concrete examples, including the M algebra and a D'Auria-Fré-like Superalgebra, are considered. Finally, we find explicit, non-trace invariant tensors for these S-expanded algebras, which are essential ingredients in, e.g., the formulation of Supergravity theories in arbitrary spacetime dimensions.
Chern-Simons models for gravity are interesting because they provide with a truly gauge-invariant action principle in the fiber-bundle sense. So far, their main drawback has largely been the perceived remoteness from standard General Relativity, based on the presence of higher powers of the curvature in the Lagrangian (except, remarkably, for threedimensional spacetime). Here we report on a simple model that suggests a mechanism by which standard General Relativity in five-dimensional spacetime may indeed emerge at a special critical point in the space of couplings, where additional degrees of freedom and corresponding "anomalous" Gauss-Bonnet constraints drop out from the Chern-Simons action. To achieve this result, both the Lie algebra g and the symmetric g-invariant tensor that define the Chern-Simons Lagrangian are constructed by means of the Lie algebra S-expansion method with a suitable finite abelian semigroup S. The results are generalized to arbitrary odd dimensions, and the possible extension to the case of eleven-dimensional supergravity is briefly discussed.
We show that the so-called semi-simple extended Poincaré (SSEP) algebra in D dimensions can be obtained from the anti-de Sitter algebra so (D − 1, 2) by means of the S-expansion procedure with an appropriate semigroup S. A general prescription is given for computing Casimir operators for S-expanded algebras, and the method is exemplified for the SSEP algebra. The S-expansion method also allows us to extract the corresponding invariant tensor for the SSEP algebra, which is a key ingredient in the construction of a generalized action for Chern-Simons gravity in 2 + 1
In the context of Chern-Simons (CS) Theory, a subspace separation method for the Lagrangian is proposed. The method is based on the iterative use of the Extended Cartan Homotopy Formula, and allows one to (1) separate the action in bulk and boundary contributions, and (2) systematically split the Lagrangian in appropriate reflection of the the subspace structure of the gauge algebra.In order to apply the method, one must regard CS forms as a particular case of more general objects known as transgression forms. Five-dimensional CS Supergravity is used as an example to illustrate the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.