Recent efforts of bone repair focus on development of porous scaffolds for cell adhesion and proliferation. Collagen-nanohydroxyapatite (HA) scaffolds (70:30; 50:50; and 30:70 mass percentage) were produced by cryogelation technique using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide as crosslinking agents. A pure collagen scaffold was used as control. Morphology analysis revealed that all cryogels had highly porous structure with interconnective porosity and the nanoHA aggregates were randomly dispersed throughout the scaffold structure. Chemical analysis showed the presence of all major peaks related to collagen and HA in the biocomposites and indicated possible interaction between nanoHA aggregates and collagen molecules. Porosity analysis revealed an enhancement in the surface area as the nanoHA percentage increased in the collagen structure. The biocomposites showed improved mechanical properties as the nanoHA content increased in the scaffold. As expected, the swelling capacity decreased with the increase of nanoHA content. In vitro studies with osteoblasts cells showed that they were able to attach and spread in all cryogels surfaces. The presence of collagen-nanoHA biocomposites resulted in higher overall cellular proliferation compared to pure collagen scaffold. A statistically significant difference between collagen and collagen-nanoHA cryogels was observed after 21 day of cell culture. These innovative collagen-nanoHA cryogels could have potentially appealing application as scaffolds for bone regeneration.
O PDF relativo ao artigo que solicita, não se encontra disponível em Acesso Aberto.
Motivos: O editor não permite o depósito e disponibilização em acesso aberto do PDF que solicita. Para consultar o documento deve aceder ao endereço do editor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.